

B411 Land at Teversham Road, Fulbourn, Cambridgeshire Flood Risk and Surface Water Management Update January 2017 For Castlefield International Ltd

Introduction

This note and accompanying information has been prepared to support an outline planning application for a proposed residential development on land to the east of Teversham Road, Fulbourn, Cambridgeshire.

The note provides a summary of the recent planning history for the site with regards to flooding and surface water management. The note also presents an updated surface water management strategy which includes the most recent allowance for climate change 40 %.

The 2017 application follows an outline application which was previously refused, and which was subsequently unsuccessful at appeal. The planning application was submitted in 2014 under South Cambridgeshire District Council (SCDC) reference S/2273/14/OL. No flood risk related grounds for refusal were raised, and positive consultation responses were received from both the Environment Agency (EA) and the SCDC drainage officer (Mr Pat Matthews). It is worth noting that whilst the planning appeal was unsuccessful (reference APP/W0530/W/15/339730), no deficiencies on flood risk and surface water management matters were identified by the Planning Inspector.

The 2017 application replicates the previous application in that it is an outline application for the same housing numbers with the same illustrative plot layout. It is therefore appropriate that the flood risk and surface water management pack which supports the 2017 application comprises the 2014 Flood Risk Assessment (reference CCE/B411/FRA-03) and the additional information (summarised below) appended to this note.

Additional available information

As part of the planning appeal process, in order to provide robust responses to any concerns about flood risk (of which there were none raised by the Planning Inspector), two flood risk related investigations were commissioned/progressed, namely:

- Continued groundwater level monitoring at the site (a total of twelve monitoring visits were carried out); and
- A site specific flood model undertaken by H R Wallingford.

Forms of Flooding

Appended to this report are a number of updated flood maps (Figures 1 to 4) which demonstrate that the assertions and discussion in Section 2 of the 2014 FRA ("Forms of Flooding") are still relevant to the site and the illustrative proposals.

As noted in the FRA, the most notable flood risk to the site is from inundation as a result of surface water flooding as a result of overland flow from the land to the south. As discussed in the Flood Management section of the FRA (pages 6 and 7), the illustrative layout has been planned around the need to maintain space for the surface water floodwater to flow into, and through the site to avoid diverting the floodwater elsewhere. The key flood management measures involve the creation of development platforms (in the order of 500 mm above existing site levels) around a central flood management area.

The purpose of the H R Wallingford flood model was two-fold. Firstly to establish a site specific flood outline/extent at the site, and secondly to check that the proposed flood management measures would be effective in managing flood risk. In the case of the latter more critical purpose of the flood model, the report concluded that the proposed flood management would indeed avoid increasing off-site flood risk.

Surface water management

The surface water management scheme presented in the FRA comprises shallow bio-retention areas/attenuation basins which discharge to the central Award Drain running through the site. Flows would be conveyed to the bio-retention areas/attenuation basins via permeable paving and planted rills. There is also the option to include grassed filter drains alongside the roads in order to provide additional treatment of road runoff.

The appended revised surface water management scheme and calculations include two main alterations/updates to the 2014 strategy:

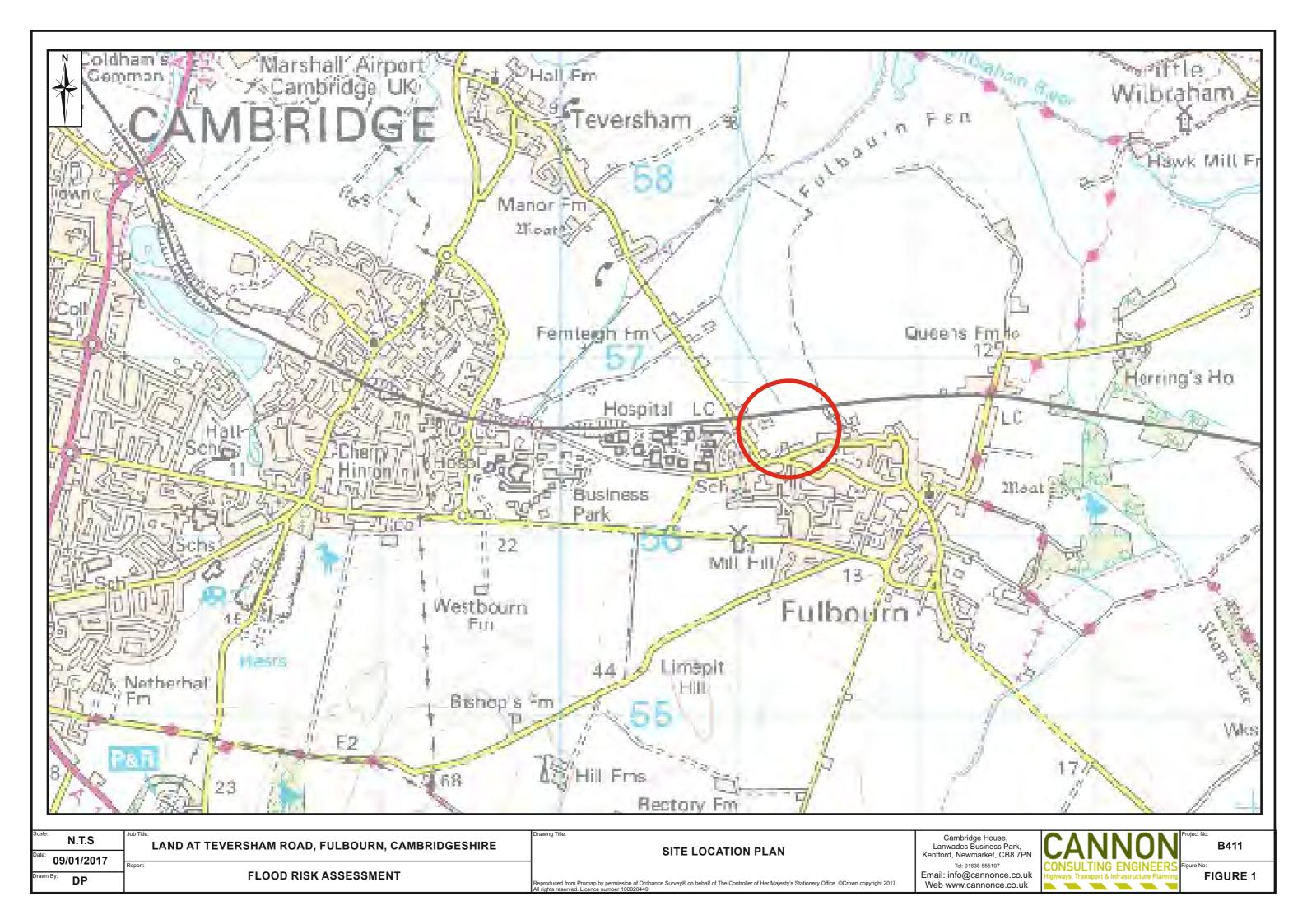
- The surface water management scheme presented in the FRA includes a 30 % increase in rainfall in order to account for the potential result of climate change. The calculations have been revised to include the new requisite 40 % allowance for climate change introduced in 2016.
- The area of the bio-retention area/attenuation basin in the south-east of the site has been reduced in order to avoid disturbing/removing an area of potentially interesting vegetation. The reduction in basin volume has been offset with the inclusion of some shallow storage crates beneath the permeable paving in the adjacent development parcel.

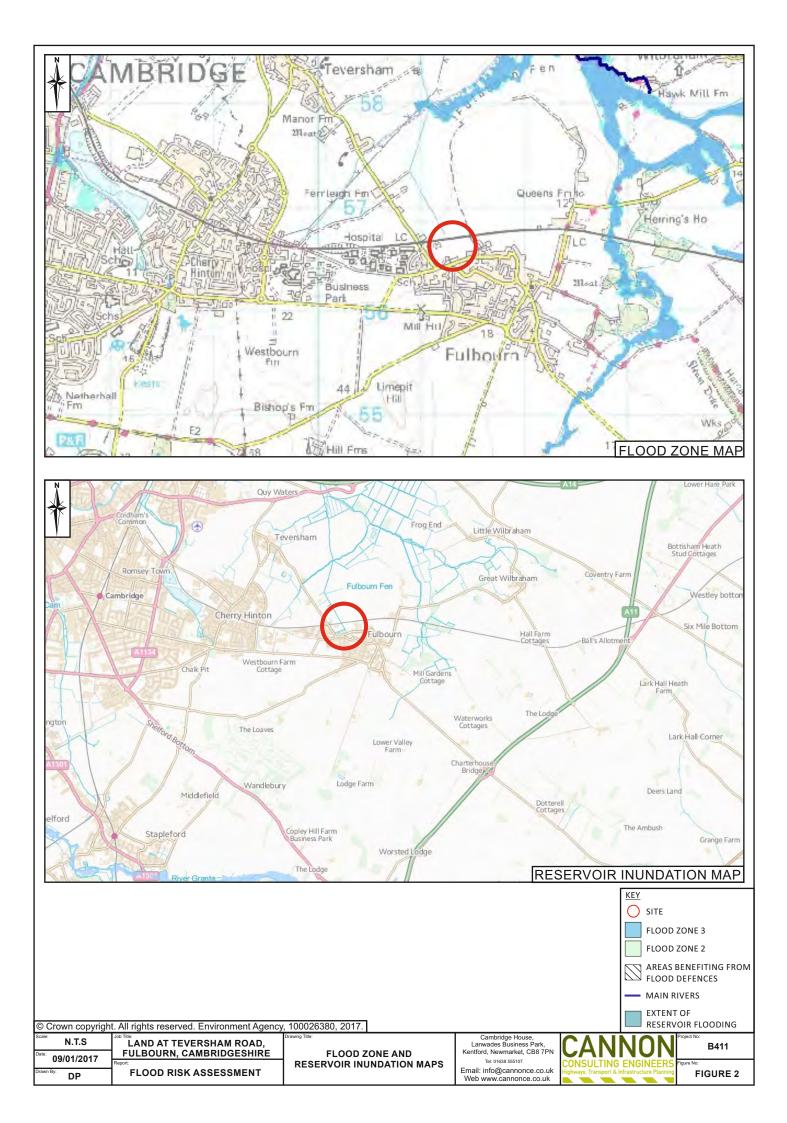
Appended information

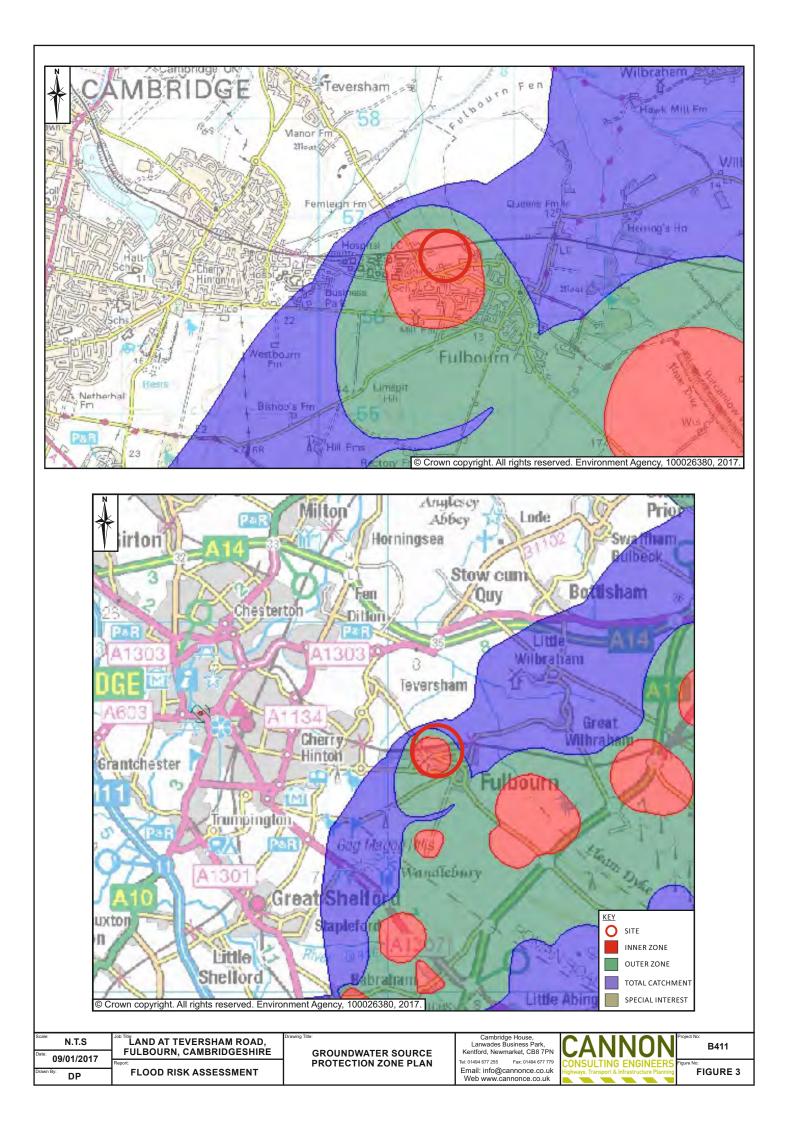
Figures

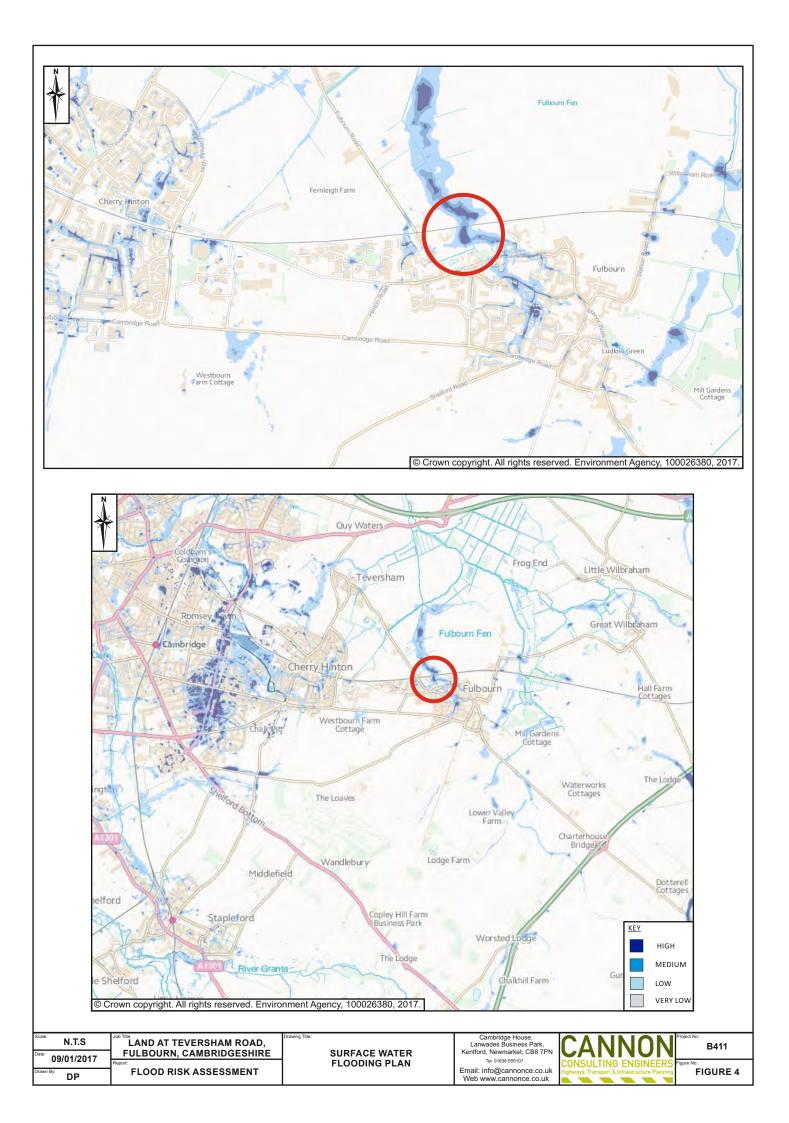
2014 Flood Risk Assessment, CCE/B411/FRA-03

2016 H R Wallingford flood modelling report, MAM7720-RT001-R02-00


Revised surface water calculations (with 40 % allowance for climate change)


Updated surface water management strategy B411-004-Rev A


2016 Geosphere groundwater monitoring report



Figures

2014 Flood Risk Assessment, CCE/B411/FRA-03

Land at Teversham Road, Fulbourn, Cambridgeshire

Flood Risk Assessment

September 2014

For Castlefield International Ltd

Ref: CCE/B411/FRA-03

Cambridge House Lanwades Business Park Kentford Newmarket CB8 7PN T. 01638 555107 F. 01638 555106 info@cannonce.co.uk www.cannonce.co.uk

Document Review Sheet:

This document has been prepared for use by Castlefield International Ltd. Its content should not be relied upon by others without the written authority of Cannon Consulting Engineers. If any unauthorised third party makes use of this report they do so at their own risk and Cannon Consulting Engineers owes them no duty of care or skill.

Reference	Date	Author	Checked
CCE/B411/FRA-01	July 2014	JOH	RBT
CCE/B411/FRA-02	August 2014	JOH	RBT
CCE/B411/FRA-03	September 2014	JOH	RBT

Contents

- 1. Introduction
- 2. Forms of Flooding
- 3. Surface Water Management
- 4. Conclusions

Figures

- 1. Site Location Plan
- 2. Photo Key Plan
- 3. Flood Zone & Reservoir Inundation Map
- 4. Groundwater Source Protection Zone Map

Appendices

A. Existing Site

Topographical Survey Adopted Sewer Plans Ground Investigation Data EA Surface Water Flood Map EA Groundwater Data

B. Proposed Site

Proposed Development Layout Surface Water Management Plan WinDes Simulations – Basin A WinDes Simulations –Basin B WinDes Simulations –Basin C Greenfield Runoff Rates

Summary Table

Site location	Land east of Teversham Road, Fulbourn, Cambridgeshire
	Grid reference – 551315,256609
Planning application	Outline
Existing site	Undeveloped
Site area	Approximately 6.85 ha
Proposed development	Residential
Flood Zone Reservoir Inundation Zone Other sources of flooding	Zone 1 None Surface water Shallow groundwater potential
Surface water management	Bioretention areas sized to manage the 100 year storm plus 30% climate change with outfalls to the central watercourse.

1.0 Introduction

- 1.1 This Flood Risk Assessment (FRA) has been prepared on behalf of Castlefield International Ltd to support an outline planning application for a proposed residential development .
- 1.2 The application seeks outline planning permission for a high quality residential development of up to 110 homes, with areas of landscaping and public open space, one new access point and associated infrastructure works on land off Teversham Road, Fulbourn in the South Cambridgeshire district. It is proposed that all detailed matters (other than means of access) including layout, scale, appearance and landscaping will be determined as part of a reserved matters application.
- 1.3 The report has been prepared following site visits, on-site groundwater monitoring, two public consultation events, and a review of the Cambridgeshire Preliminary Flood Risk Assessment (PFRA), South Cambridgeshire Strategic Flood Risk Assessment (SFRA) and liaison with South Cambridgeshire.
- 1.4 This assessment takes account of the National Planning Policy Framework (NPPF) and the definitions of sources of flooding within the Flood and Water Management Act (FWMA) 2010.
- 1.5 The Environment Agency (EA) Flood Map (refer to Figure 3) shows that the site lies within Flood Zone 1 (the low probability zone).
- 1.6 The site is approximately centred on Ordnance Survey grid reference 551315,256609 and extends to approximately 6.85 ha in total. The proposed development site is currently undeveloped and predominantly laid to grassland and scrub.
- 1.7 The red line boundary includes two areas in which built development is not proposed:
 - Poorwell water, a low lying wetland area which extends southwards from the southern boundary of the eastern section of the site; and
 - A former ornamental pond (now overgrown) which sits to the west of the former Pumping Station on Cow Lane.
- 1.8 The site is bounded by the Cambridge to Ipswich rail line to the north, Cox's Drove with commercial development beyond to the east, and residential development to the south and west.
- 1.9 British Geological Survey mapping shows that the site is underlain by the West Melbury Marly Chalk Formation. An intrusive site investigation has confirmed the geology.
- 1.10 The site slopes inwards from the western and eastern boundaries to the central watercourse which flows generally northwards through the site. Levels in the western part of the site

range from approximately 10.0 to 9.3 m AOD and levels in the eastern part of the site range from approximately 10.5 m AOD to 9.3 m AOD.

- 1.11 The site is at a lower level than the majority of Fulbourn and lies at the foot of a (Chalk) hill the 'crest' of which reaches to approximately 60 m AOD at a point approximately 2.4 km to the south of the site.
- 1.12 There are three watercourses/ditches which run through/around the site:
 - The central watercourse (an award drain maintained by South Cambridgeshire) which runs northwards through the site, beneath the rail line (refer to Figure 2) and goes on to join Cawdle Ditch some 1.3 km to the north of the site. Anecdotal evidence from the public consultations suggests that the watercourse is spring fed (see paragraph 1.14 below).
 - The ditch (also an award drain) which runs along the southern boundary of the western section of the site and joins the central watercourse.
 - The Teversham Road ditch which runs northwards along Teversham Road and also joins Cawdle Ditch.

It is not proposed to remove or pipe any of the existing watercourses. Where roads and footpaths cross the central watercourse they will be bridged. Currently it is envisaged that the underside of the deck of each bridge will be in the order of 300 mm above ground levels in order to accommodate and surface water flood flows.

- 1.13 The topographical survey notes the presence of a surface water sewer/pipe in the eastern section of the site. The line of the pipe is apparently generally parallel to the southern boundary. The chamber associated with the pipe lies approximately 50 m north of the southern boundary and 30 m west of Cox's Drove. The pipe outfall could not be located but during both the survey and a subsequent site visit (during a moderate rainfall event) no flow was evident/audible in the pipe. From historic mapping (refer to the GeoSphere report which is included in the planning submission for the site) the pipe appears to have been installed in place of a land drain/boundary ditch which was present in the early 1900's. As part of the proposals (depending on the results of a later stage survey of the pipe to determine whether it accepts any incoming connections from off-site sources) it is proposed to either relocate, or preferably replace the pipe with a new, shallow (and ephemeral) watercourse (a suggested route for which is shown on the surface water management plan in Appendix B).
- 1.14 The other notable sewer/pipe in the area is the 750 mm diameter pipe which forms the head of the central watercourse. Anecdotal evidence from the public consultations suggests that the pipe conveys flows from a nearby spring to the south.

1.15 The Flood Estimation Handbook (FEH) data CD shows that the site lies within a catchment of approximately 0.5 km² (outlined in white on image 1 below). The neighbouring catchments are approximately 19.5 km² to the east (image 2) and 2.9 km² to the west (image 3).

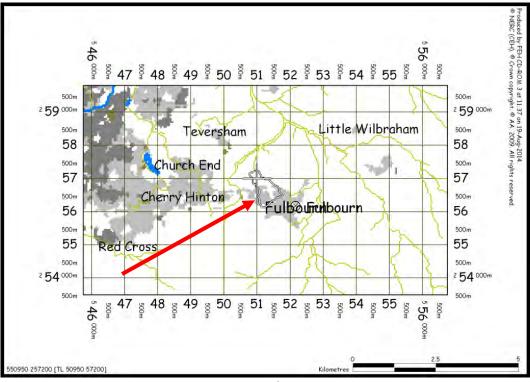


Image 1 – site catchment

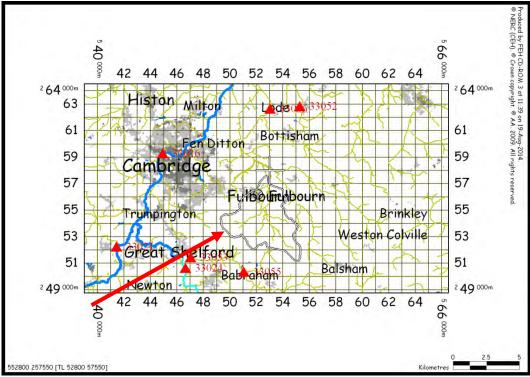


Image 2 – eastern neighbouring catchment

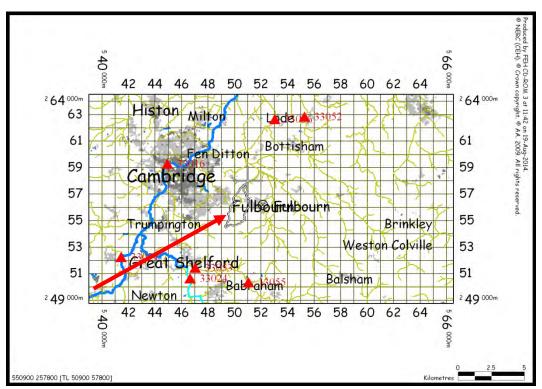


Image 3 – western neighbouring catchment

2.0 Forms of Flooding

Watercourses

- 2.1 The site lies in Flood Zone 1 (see Figure 3) and is therefore not considered to be at risk of inundation from a tidal source or river with a catchment of more than 3 km².
- 2.2 Flows in the two award drains on the site will tend to be the result of a combination of rural runoff and groundwater. The source of the groundwater elements of flow would realistically comprise the off-site spring and the water table beneath the site itself.

Surface Water

- 2.3 The EA surface water flood map (refer to Appendix A) shows that the site may be prone to surface water flooding. Judging from the shape and orientation of the surface water flood area and on and off-site ground levels, there are two potential pathways for runoff from the surrounding area (run-on) this is expected to enter the site as:
 - Flows being routed along Cox's Drove tipping onto the site at the south-eastern corner of the site; and
 - Flows gathering in an apparent low point on Cow Lane and tipping northwards (between the existing properties on Cow Lane) at a point adjacent to the Cow Lane-Cox's Drove junction.

Groundwater

- 2.4 As the site lies towards the base of a Chalk hill, it is likely to be exposed to elevated groundwater levels. To investigate this potential source of flooding and also ascertain any potential impact on the surface water management scheme associated with elevated groundwater levels, three measurements have been taken from three on-site boreholes. The measurements were taken in June and July 2014. The results of the groundwater level monitoring (refer to Appendix A for an extract of the Geosphere Environmental site investigation report) show that maximum groundwater levels were between 0.67 m and 1.2 m below ground level (bgl).
- 2.5 Groundwater level information provided by the EA for three boreholes in the wider area show that the levels recorded at the site are representative of a period of high regional groundwater. Rainfall data for Cambridge from the NIAB site (see summary table overleaf) also shows that the rainfall during May and June 2014 is above the mean rainfall over the last 14 years. It is therefore fair to treat the highest recorded groundwater level on the site of 0.67 mbgl as the 'design groundwater flood' level, and conclude that groundwater flooding (the expression of groundwater at the surface) is not a significant threat to the proposals.

Month-Yr	Rainfall (mm)	Month-Yr	Rainfall (mm)	Month-Yr	Rainfall (mm)
May-00	83.8	Jun-00	17.5	Jul-00	60.7
May-01	17.5	Jun-01	22.8	Jul-01	55.1
May-02	53.5	Jun-02	28.5	Jul-02	94.6
May-03	39.9	Jun-03	60.7	Jul-03	66.8
May-04	44.5	Jun-04	34	Jul-04	59.3
May-05	47.4	Jun-05	47.1	Jul-05	43.7
May-06	62.8	Jun-06	18.9	Jul-06	45.1
May-07	124.3	Jun-07	59	Jul-07	62.1
May-08	62.9	Jun-08	34.6	Jul-08	52.1
May-09	28.4	Jun-09	40.8	Jul-09	71
May-10	28.6	Jun-10	25.4	Jul-10	10.8
May-11	12.8	Jun-11	53	Jul-11	38.4
May-12	42.6	Jun-12	91.4	Jul-12	101.4
May-13	52	Jun-13	14.2	Jul-13	32.8
May-14	84.6	Jun-14	44.4		
Mean	52.4	Mean	39.5	Mean	56.7

Rainfall depth summary table

Surface Water Sewers

2.6 Anglian Water records (included in Appendix A) show that there is no adopted surface water sewer network in the area (and therefore no associated flood risk).

Reservoirs / Canals

2.7 The site does not lie in a reservoir inundation zone according to EA mapping (refer to Figure 3) and there are no canals in the area.

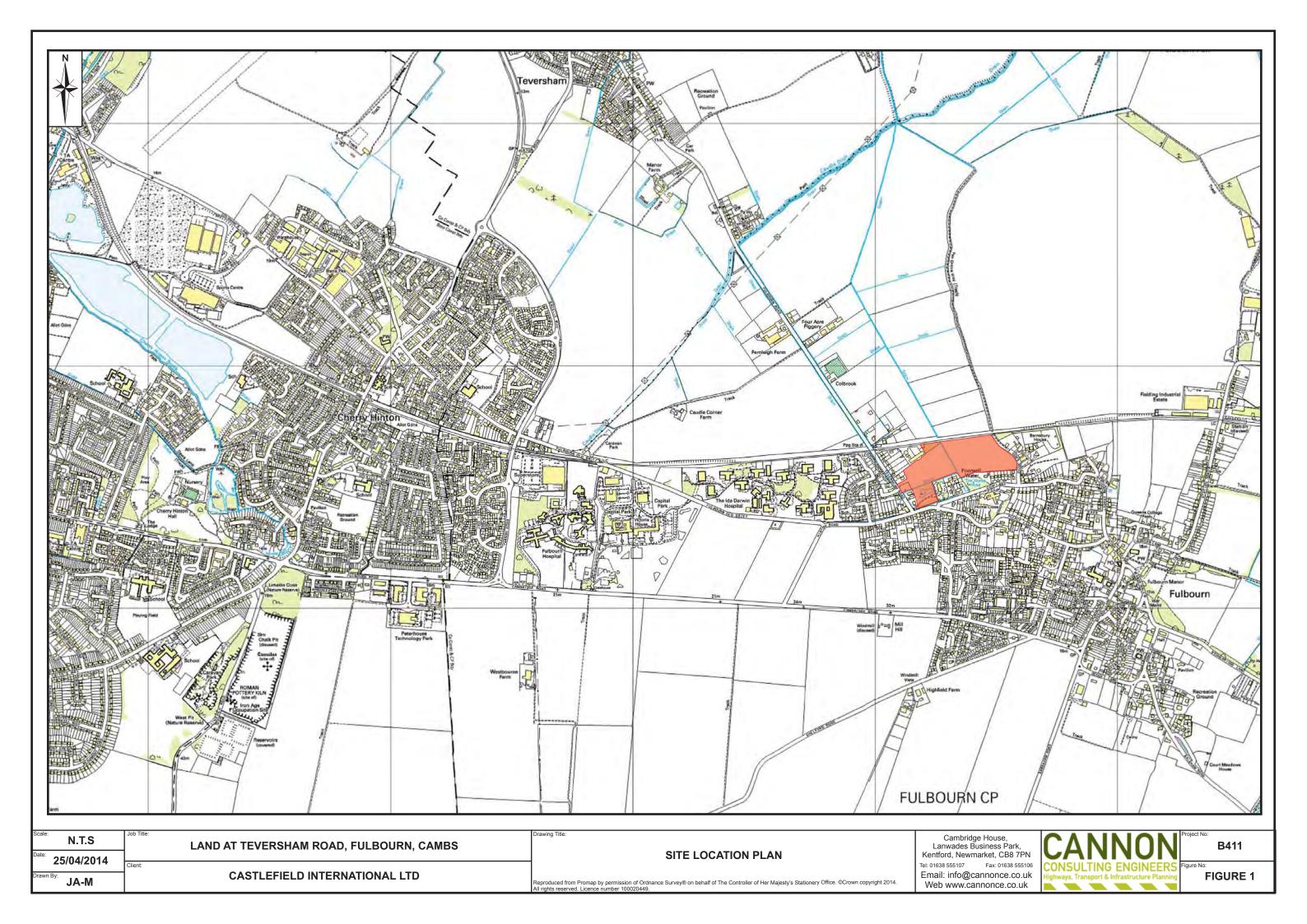
Flood Management

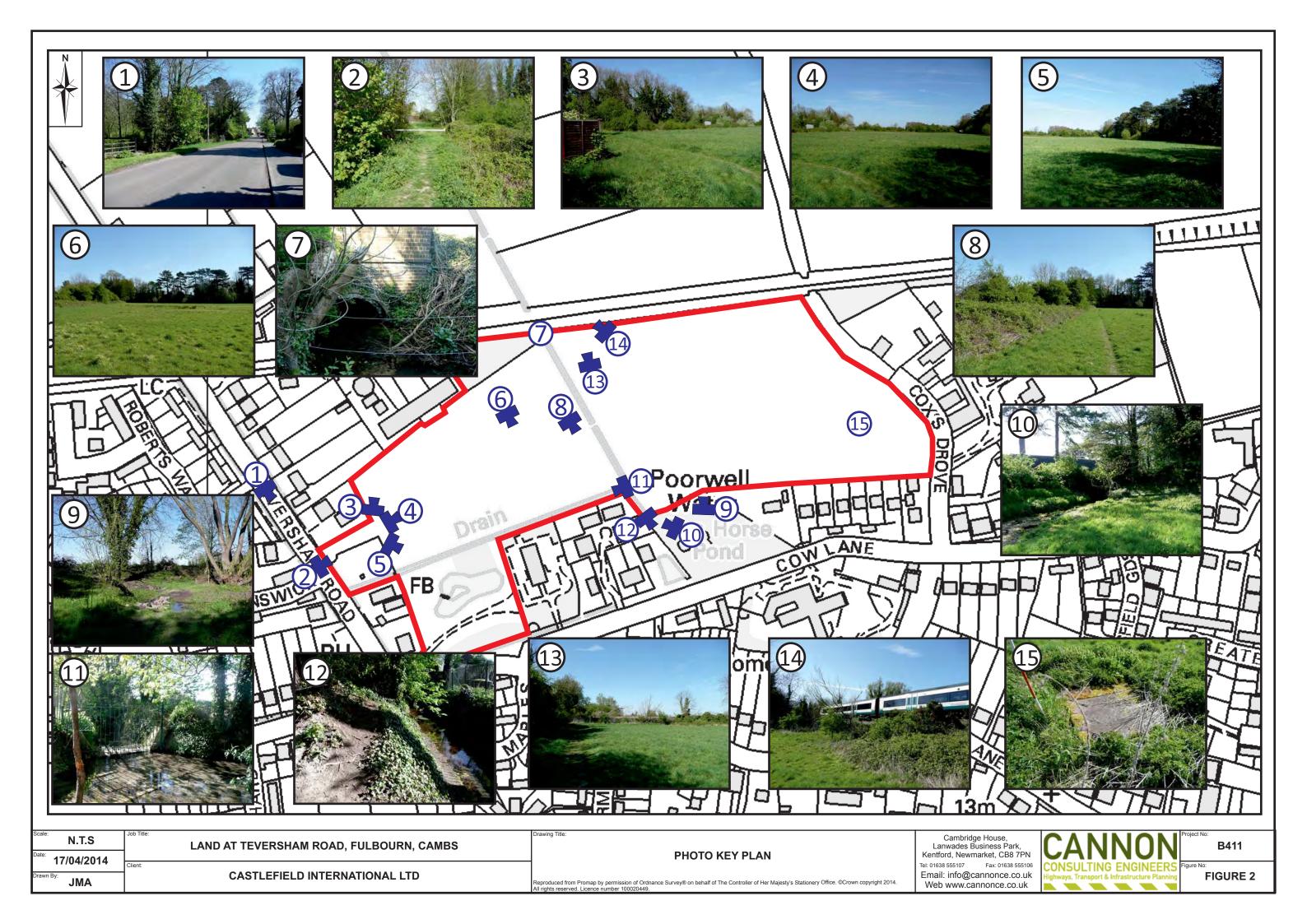
- 2.8 The proposed layout has been based around the need to provide space for surface water runoff shed from the surrounding development (run-on) and for runoff generated by the proposed development itself (run-off). By making space for water the proposals avoid the potential displacement of run-on to the surrounding development.
- 2.9 The flood routing and storage areas included in the layout (refer to the surface water management drawing in Appendix B) focus on leaving the majority of the high and medium surface water flood areas free of built development. The notable exception to this is parcel C (the southern most of the parcels in the eastern section of the site) where existing ground levels between Cox's Drove and the parcel will be modified (lowered by 150 to 300 mm) in

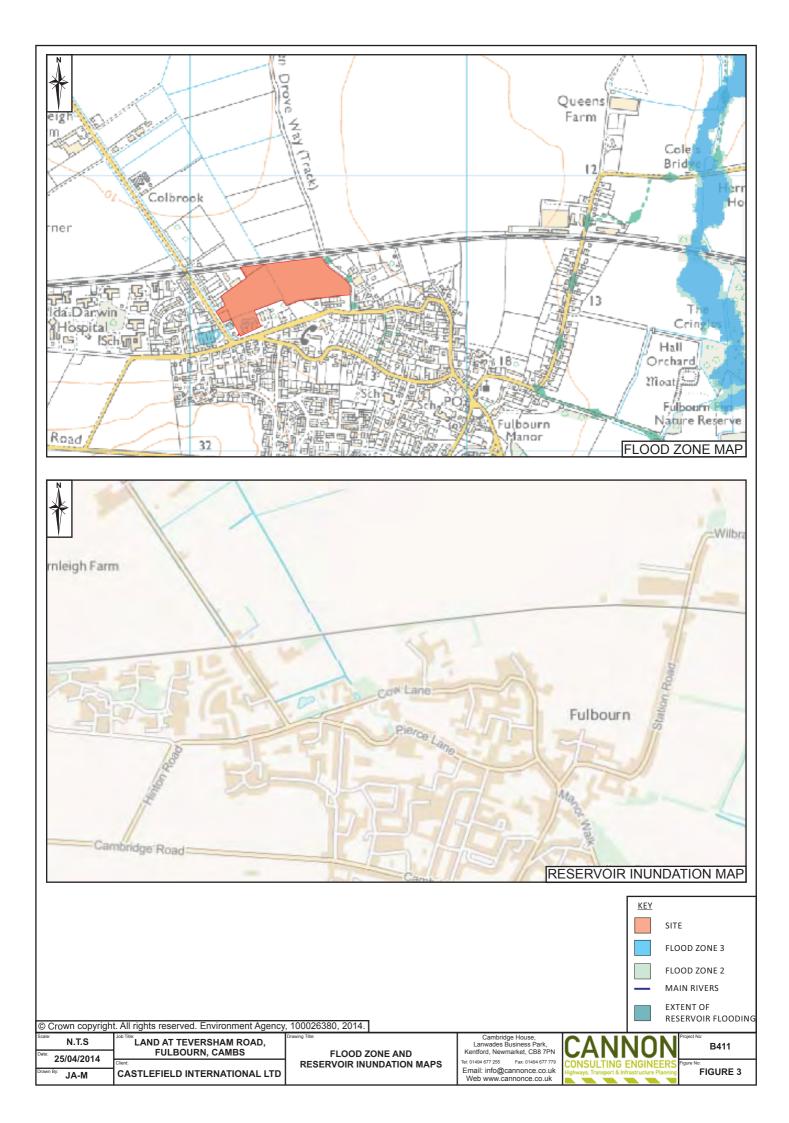
order to route potential run-on northwards towards the intra parcel open space and parkland.

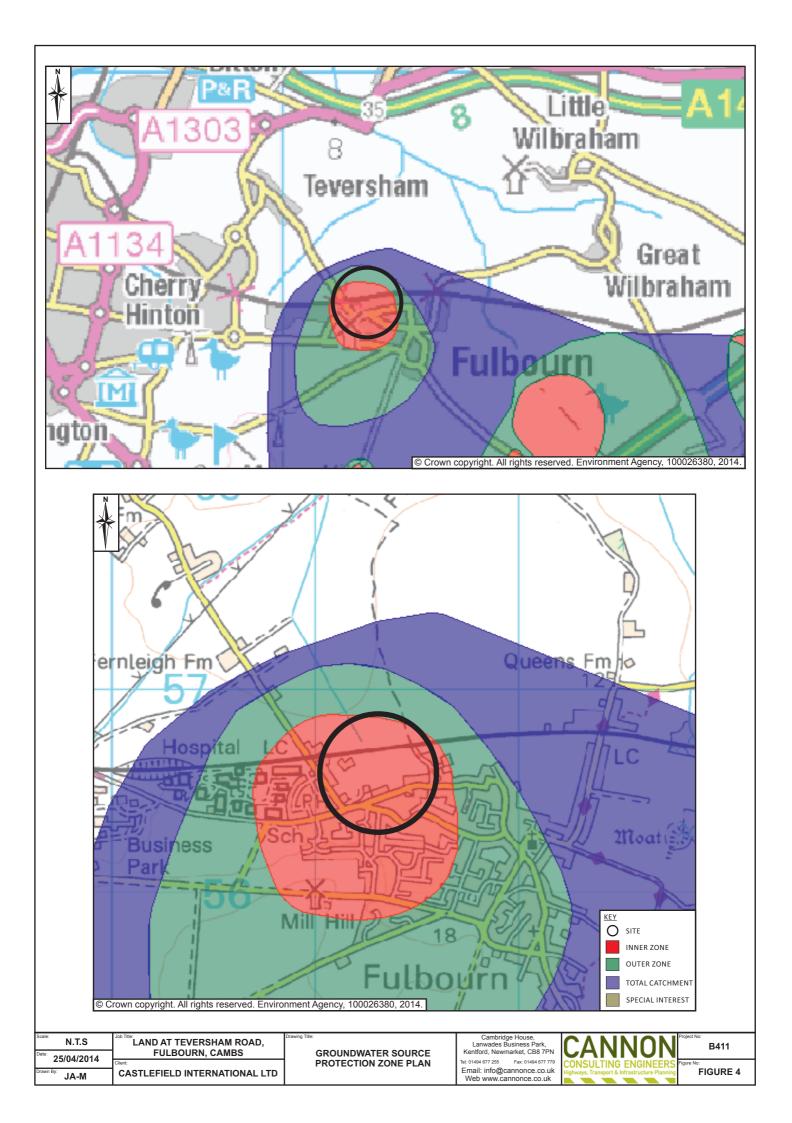
- 2.10 Finished floor levels will be set at or above 300 mm above current ground levels as an added precaution against surface water flooding.
- 2.11 The proposed road links between the two parcels in the east and Cox's Drove access will be bridged (we envisage this being achieved with either a clear span arrangement or with part buried box culverts). As discussed, the crossings over the central watercourse will be via a clear span bridge.
- 2.12 The majority of the various walkways throughout the site will be raised. We envisage that the level of the walkways passing through the bio retention areas (see Section 3.0) will be set with reference to the top water level of the facilities.
- 2.13 All proposals are subject to detailed design and approval of relevant parties (in particular South Cambridgeshire District Council as part of their land drainage consenting function).

3.0 Surface Water Management

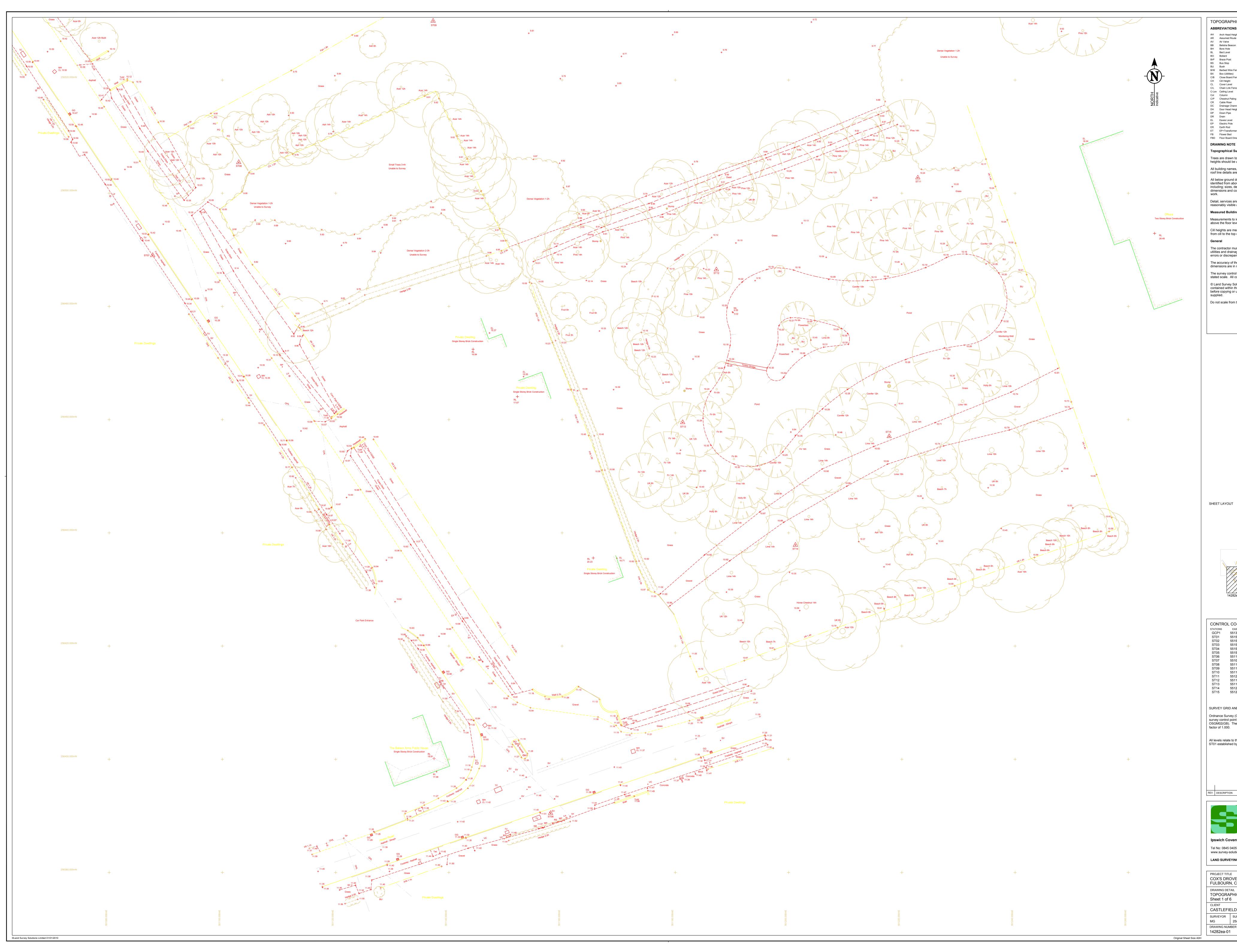

- 3.1 The underlying geology means that infiltration rates at the site are likely to be relatively high. This is supported by the low greenfield runoff rate calculated for the area. The inference is that the majority of rain falling on undeveloped land percolates into the ground.
- 3.2 Despite the probability that infiltration rates in the area would support an infiltration drainage solution, the proposed surface water management scheme relies on an outfall to the central watercourse because of the potentially high groundwater levels in the area.
- 3.3 It is worth noting that, because a low runoff rate and a 48 hour drain-down time are mutually exclusive, the proposed surface water attenuation facilities have been sized to accommodate a long duration storm (as suggested in Section 4 of the Ciria SuDS Manual).
- 3.4 The surface water scheme comprises three bioretention areas (A, B and C) which will each serve to take flows from one of the three proposed development parcels. The design depth of each facility is 600 mm with side slopes of between 1 in 4 and 1 in 2. The steeper side slopes will be used along sides which are unlikely to be used to access the bioretention basin. The flows leaving the bioretention basins will be controlled by a filter control (a depth of permeable material feeding a perforated pipe). WinDes simulations of each bioretention area are included in Appendix B.
- 3.5 Although losses to infiltration are not allowed for within the WinDes simulations of the bioretention basins infiltration will clearly occur. In order to address the potential concerns of Network Rail about infiltration facilities It is envisaged that bioretention Basin B will be lined in order to prevent infiltration
- 3.6 Flows will be conveyed to the bioretention basins via a series of rills/canals. Two main types of rill/canal are envisaged:
 - Planted 'residential' rills serving to collect runoff shed from roofs and private hadstanding; and
 - Roadside rills (inspired by Hobson's Conduit) serving the roads (with the possibility to also convey runoff from the planted rills. Where each highway rill outfalls to a bioretention area a sediment forebay will be created (using either a micropool or low bund).
- 3.7 As the discharge from the site is being limited to the annual greenfield rate (the 1 in 1 year greenfield rate) long term storage is not required.
- 3.8 All proposals are subject to detailed design and the approval of relevant parties. With the delay in the introduction of SABs it is envisaged that adoption and maintenance of the majority of 'public' surface water management features will be offered to Anglian Water


however South Cambridgeshire District council may wish to combine maintenance of the bioretention basins with their current maintenance of the two award drains. The latter will be subject to later stage discussions with the relevant parties. Any shortfall in maintenance will be accounted for by a private management company.


4.0 Conclusions


- 4.1 The development site is located entirely within Flood Zone 1 and is therefore not considered to be at risk of flooding from main rivers or watercourse with a significant catchment.
- 4.2 The proposed development is not considered to be at a significant or unmanageable risk of flooding from other sources of flooding. The surface water flood risk shown on EA mapping will be addressed by maintaining space for potential floodwater within the layout and setting finished floor levels 300 mm above ground levels.
- 4.3 Surface water runoff will be managed via three bioretention basins all sized to manage the 1 in 100 year storm plus 30 % allowance for climate change.

Figures and Drawings



Appendices

A Existing Site

Topographical Survey Adopted Sewer Plans Ground Investigation Data EA Surface Water Flood Map EA Groundwater Data

TOPOGRAPHICAL & MEASURED BUILDING SURVEYS

ABBREVIATIONS & SYMBOLS							
AH	Arch Head Height	FH	Fire Hydrant	RSJ	Rolled Steel Joist		
AR	Assumed Route	FBD	Floor Board Direction	SI	Sign Post		
AV	Air Valve	FH	Fire Hydrant	SP	Arch Spring Point Height		
BB	Belisha Beacon	FL	Floor Level	SV	Stop Valve		
BH	Bore Hole	FP	Flag Pole	SW	Surface Water		
BL	Bed Level	FW	Foul Water	SY	Stay		
BO	Bollard	GG	Gully Grate	Tac	Tactile Paving		
BrP	Brace Post	GV	Gas Valve	тс	Telecom Cover		
BS	Bus Stop	нн	Head Height	ΤН	Trial Pit		
BU	Bush	IC	Inspection Cover	THL	Threshold Level		
B/W	Barbed Wire Fence	IL	Invert Level	TL	Traffic Light		
BX	Box (Utilities)	I/R	Iron Railings	ToW	Top of Wall		
C/B	Close Board Fence	KO	Kerb Outlet	TP	Telegraph Pole		
CH	Cill Height	LP	Lamp Post	TV	Cable TV Cover		
CL	Cover Level	MH	Manhole	UB	Universal Beam		
C/L	Chain Link Fence	MP	Marker Post	UC	Unknown Cover		
C-Lev	Ceiling Level	NB	Name Board	UK	Unknown Tree		
Col	Column	OHL	Overhead Line (approx)	USB	Under Side Beam		
C/P	Chestnut Paling Fence	Pan	Panel Fence	UTL	Unable To Lift		
CR	Cable Riser	PB	Post Box	VP	Vent Pipe		
DC	Drainage Channel	PM	Parking Meter	WB	Waste Bin		
DH	Door Head Height	PO	Post	WH	Weep Hole		
DP	Down Pipe	P/R	Post & Rail Fence	WL	Water Level		
DR	Drain	P/W	Post & Wire Fence	WM	Water Meter		
EL	Eaves Level	P/Wall	Partition Wall	WO	Wash Out		
EP	Electric Pole	RE	Rodding Eye	\otimes	Floor to Ceiling Height		
ER	Earth Rod	RL	Ridge Level	_			
ET	EP+Transformer	RP	Reflector Post	€XXF/C	Floor to False Ceiling Ht		
FB	Flower Bed	RS	Road Sign	-			
FBD	Floor Board Direction	RSD	Roller Shutter Door	\triangle	Survey Control Station		

Topographical Surveys

DRAWING NOTE

Trees are drawn to scale showing the average canopy spread. Descriptions and heights should be used as a guide only. All building names, descriptions, number of storeys, construction type including roof line details are indicative only and taken externally from ground level.

All below ground details including drainage, voids and services have been identified from above ground and therefore all details relating to these features including; sizes, depth, description etc will be approximate only. All critical dimensions and connections should be checked and verified prior to starting work.

Detail, services and features may not have been surveyed if obstructed or not reasonably visible at the time of the survey. Measured Building Surveys

Measurements to internal walls are taken to the wall finishes at approx 1m above the floor level and the wall assumed to be vertical. Cill heights are measured as floor to the cill and head heights are measured from cill to the top of window. General

The contractor must check and verify all site and building dimensions, levels, utilities and drainage details and connections prior to commencing work. Any errors or discrepancies must be notified to Survey Solutions immediately. The accuracy of the digital data is the same as the plotting scale implies. All dimensions are in metres unless otherwise stated. The survey control listed is only to be used for topographical surveys at the stated scale. All control must be checked and verified prior to use. © Land Survey Solutions Limited holds the copyright to all the information contained within this document and their written consent must be obtained before copying or using the data other than for the purpose it was originally supplied. Do not scale from this drawing.

SHEET LAYOUT Offsite Sections

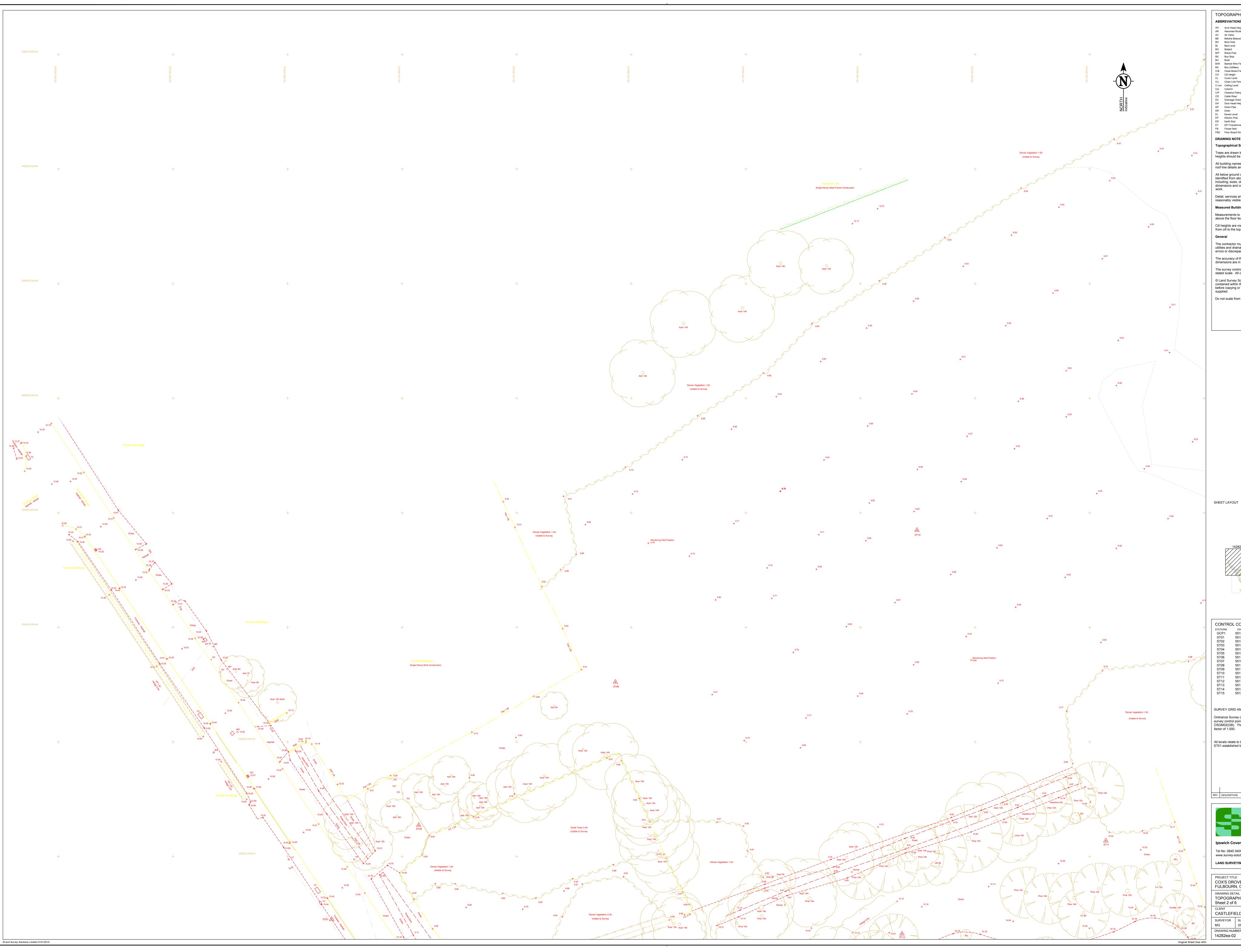
STATIONS	EASTINGS	NORTHINGS	LEVEL	DESCRIPTION
GCP1	551339.924	256595.128	9.812	Peg & Nail
ST01	551511.229	256587.992	10.310	PK Nail
ST02	551579.712	256628.221	10.744	PK Nail
ST03	551593.339	256584.501	10.637	PK Nail
ST04	551588.010	256544.664	10.717	PK Nail
ST05	551592.268	256501.756	10.921	PK Nail
ST06	551157.979	256390.469	11.490	PK Nail
ST07	551087.701	256489.037	10.442	PK Nail
ST08	551102.890	256505.472	10.196	Peg & Nail
ST09	551137.219	256530.439	10.190	Peg & Nail
ST10	551189.855	256556.963	9.865	Peg & Nail
ST11	551222.824	256502.742	10.407	Peg & Nail
ST12	551187.243	256486.512	10.463	Peg & Nail
ST13	551181.304	256459.515	10.708	Peg & Nail
ST14	551201.206	256437.850	10.572	Peg & Nail
ST15	551217.759	256457.045	11.053	Peg & Nail

SURVEY GRID AND LEVEL DATUM Ordnance Survey (OS) national grid coordinates have been established for survey control point ST01 using GPS and related to OSTN02(GB) and OSGM02(GB). The survey grid is orientated to Grid North with a scale factor of 1.000.

All levels relate to the Ordnance Survey (OS) level datum at survey control point ST01 established by GPS using OSGM02(GB).

DRAWN APPR DATE

SCALE 1:200


FINAL

Tel No: 0845 0405 969 www.survey-solutions.co.uk enquiries@survey-solutions.co.uk LAND SURVEYING BUILDING SURVEYING UNDERGROUND SURVEYING

PROJECT TITLE COX'S DROVE, FULBOURN, CAMBRIDGESHIRE. DRAWING DETAIL TOPOGRAPHICAL SURVEY Sheet 1 of 6

CLIENT

CASTLEFIELD INTERNATIONAL LTD SURVEYOR SURVEY DATE CHECKED BY APPROVED BY DWG STATUS MG 25/05/2014 MWK GJN REVISION ISSUE DATE 29/05/2014

TOPOGRAPHICAL & MEASURED BUILDING SURVEYS ABBREVIATIONS & SYMBOLS

AH AR AV BBB BL BC Brf BS BU BA BX C/I C-I C/I C-I	Assur Ar Va Belish Bore I Bed L Bollar Barace Bus S Bush V Barbe Box (I B Close Cill He Cover	a Beacon Hole Level d Post top ed Wire Fence Utilities) Board Fence eight r Level L Link Fence	FH FBD FH FL FP FW G G V H I C L I K O L P H MP	Fire Hydrant Floor Board Direction Fire Hydrant Floor Level Flag Pole Foul Water Gully Grate Gas Valve Head Height Inspection Cover Invert Level Iron Railings Kerb Outlet Lamp Post Manhole	RSJ SI SV SW SY Tac TC TH TLL ToW TP TV UB	Rolled Steel Joist Sign Post Arch Spring Point Height Stop Valve Surface Water Stay Tactile Paving Telecom Cover Trial Pit Threshold Level Traffic Light Top of Wall Telegraph Pole Cable TV Cover Universal Beam
AV BB BH BL BC BM BS BU BA BX C/I CH CL C/I C-1	Air Va Belish Bore I Bed L Bollar P Brace Bus S Bush V Barbe Box (I B Close Cill He Cover Chain	alve na Beacon Hole evel d Post Stop ed Wire Fence Utilities) Board Fence eight r Level L Link Fence	FH FL FP FW GG HH IC IL I/R KO LP MH	Fire Hydrant Floor Level Flag Pole Foul Water Gully Grate Gas Valve Head Height Inspection Cover Invert Level Iron Railings Kerb Outlet Lamp Post Manhole	SP SV SW SY Tac TC TH THL TL ToW TP TV UB	Arch Spring Point Height Stop Valve Surface Water Stay Tactile Paving Telecom Cover Trial Pit Threshold Level Traffic Light Top of Wall Telegraph Pole Cable TV Cover Universal Beam
BB BH BL BC Bf BS BU BA BX C/F CL C/I C-1	Belish Bore I Bed L Bollar P Brace Bus S Bush V Barbe Box (I B Close Cill He Cover Chain	a Beacon Hole Level d Post top ed Wire Fence Utilities) Board Fence eight r Level L Link Fence	FL FP FW GG GV HH IC IL I/R KO LP MH	Floor Level Flag Pole Foul Water Gully Grate Gas Valve Head Height Inspection Cover Invert Level Iron Railings Kerb Outlet Lamp Post Manhole	SV SW SY Tac TC TH THL TL ToW TP TV UB	Stop Valve Surface Water Stay Tactile Paving Telecom Cover Trial Pit Threshold Level Traffic Light Top of Wall Telegraph Pole Cable TV Cover Universal Beam
BH BL BC BT BS BU BA BX C/A CH CL C/I C-I	Bore I Bore I Bed L Bollar P Brace Bus S Bush V Barbe Box (I Box (I Box Close Cill He Cover Chain	Hole evel d Post top Utilities) Board Fence eight r Level L Link Fence	FP FW GG GV HH IC IL I/R KO LP MH	Flag Pole Foul Water Gully Grate Gas Valve Head Height Inspection Cover Invert Level Iron Railings Kerb Outlet Lamp Post Manhole	SW SY Tac TC TH THL THL TOW TP TV UB	Surface Water Stay Tactile Paving Telecom Cover Trial Pit Threshold Level Traffic Light Top of Wall Telegraph Pole Cable TV Cover Universal Beam
BL BC Brf BS BU BA BX C/L CL CL C/L C-1	Bed L Bollar P Brace Bus S Bush V Barbe Box (I 3 Close Cill He Cover Chain	evel d Post stop Utilities) Board Fence eight r Level Link Fence	FW GG GV HH IC IL I/R KO LP MH	Foul Water Gully Grate Gas Valve Head Height Inspection Cover Invert Level Iron Railings Kerb Outlet Lamp Post Manhole	SY Tac TC TH THL TL TOW TP TV UB	Stay Tactile Paving Telecom Cover Trial Pit Threshold Level Traffic Light Top of Wall Telegraph Pole Cable TV Cover Universal Beam
BC Bri BS BU BA BX C/I CL C/I C-I	Bollar Brace Bus S Bush V Barbe Box (I 3 Close Cill He Cover Chain	d Post itop Utilities) Board Fence eight L Level	GG GV HH IC IL I/R KO LP MH	Gully Grate Gas Valve Head Height Inspection Cover Invert Level Iron Railings Kerb Outlet Lamp Post Manhole	Tac TC TH THL TL ToW TP TV UB	Tactile Paving Telecom Cover Trial Pit Threshold Level Traffic Light Top of Wall Telegraph Pole Cable TV Cover Universal Beam
Brf BS BU BA BX C/I CL C/I C-I	 Brace Bus S Bush W Barbe Box (I Close Cill He Cover Chain 	Post Stop Utilities) Board Fence eight r Level Link Fence	GV HH IC IL I/R KO LP MH	Gas Valve Head Height Inspection Cover Invert Level Iron Railings Kerb Outlet Lamp Post Manhole	TC TH THL TL ToW TP TV UB	Telecom Cover Trial Pit Threshold Level Traffic Light Top of Wall Telegraph Pole Cable TV Cover Universal Beam
BS BU BA BX C/I CF CL C/I C-I	Bus S Bush V Barbe Box (U Box (U Box (U Close Cill He Cover Chain	ttop d Wire Fence Utilities) Board Fence eight r Level L Link Fence	HH IC IL I/R KO LP MH	Head Height Inspection Cover Invert Level Iron Railings Kerb Outlet Lamp Post Manhole	TH THL TL ToW TP TV UB	Trial Pit Threshold Level Traffic Light Top of Wall Telegraph Pole Cable TV Cover Universal Beam
BU BA BX C/f CH CL C/I C-I	Bush Barbe Box (U B Close Cill He Cover Chain	ed Wire Fence Utilities) Board Fence eight r Level Link Fence	IC IL I/R KO LP MH	Inspection Cover Invert Level Iron Railings Kerb Outlet Lamp Post Manhole	THL TL ToW TP TV UB	Threshold Level Traffic Light Top of Wall Telegraph Pole Cable TV Cover Universal Beam
BA BX C/f CL CL C/I C-I	V Barbe Box (I Close Cill He Cover Chain	Utilities) Board Fence eight r Level I Link Fence	IL I/R KO LP MH	Invert Level Iron Railings Kerb Outlet Lamp Post Manhole	TL ToW TP TV UB	Traffic Light Top of Wall Telegraph Pole Cable TV Cover Universal Beam
BX C/I CL C/I C/I	Box (I Box (I Close Cill He Cover Chain	Utilities) Board Fence eight r Level I Link Fence	I/R KO LP MH	Iron Railings Kerb Outlet Lamp Post Manhole	ToW TP TV UB	Top of Wall Telegraph Pole Cable TV Cover Universal Beam
C/I CF CL C/I C-I	Close Cill He Cover Chain	Board Fence eight Level Link Fence	KO LP MH	Kerb Outlet Lamp Post Manhole	TP TV UB	Telegraph Pole Cable TV Cover Universal Beam
C⊦ CL C/I C-I	Cill He Cover Chain	eight r Level I Link Fence	LP MH	Lamp Post Manhole	TV UB	Cable TV Cover Universal Beam
CL C/I C-I	Cover Chain	Level Link Fence	МН	Manhole	UB	Universal Beam
C/I C-I	Chain	Link Fence		marinolo		
C-I			MP			
	ev Ceilin			Marker Post	UC	Unknown Cover
Co		g Level	NB	Name Board	UK	Unknown Tree
	Colum	nn	OHL	Overhead Line (approx)	USB	Under Side Beam
C/I	Chest	tnut Paling Fence	Pan	Panel Fence	UTL	Unable To Lift
CF	Cable	Riser	PB	Post Box	VP	Vent Pipe
DC	Draina	age Channel	PM	Parking Meter	WB	Waste Bin
DH	Door I	Head Height	PO	Post	WH	Weep Hole
DF	Down	Pipe	P/R	Post & Rail Fence	WL	Water Level
DF	Drain		P/W	Post & Wire Fence	WM	Water Meter
EL	Eaves	s Level	P/Wall	Partition Wall	WO	Wash Out
EP	Electr	ic Pole	RE	Rodding Eye	∞	Floor to Ceiling Height
ER	Earth	Rod	RL	Ridge Level	-	
ET	EP+T	ransformer	RP	Reflector Post	(XX)F/C	Floor to False Ceiling Ht
FB	Flowe	er Bed	RS	Road Sign	•	
FB	D Floor	Board Direction	RSD	Roller Shutter Door	A	Survey Control Station

Topographical Surveys

Trees are drawn to scale showing the average canopy spread. Descriptions and heights should be used as a guide only. All building names, descriptions, number of storeys, construction type including roof line details are indicative only and taken externally from ground level.

All below ground details including drainage, voids and services have been identified from above ground and therefore all details relating to these features including; sizes, depth, description etc will be approximate only. All critical dimensions and connections should be checked and verified prior to starting work.

Detail, services and features may not have been surveyed if obstructed or not reasonably visible at the time of the survey. Measured Building Surveys

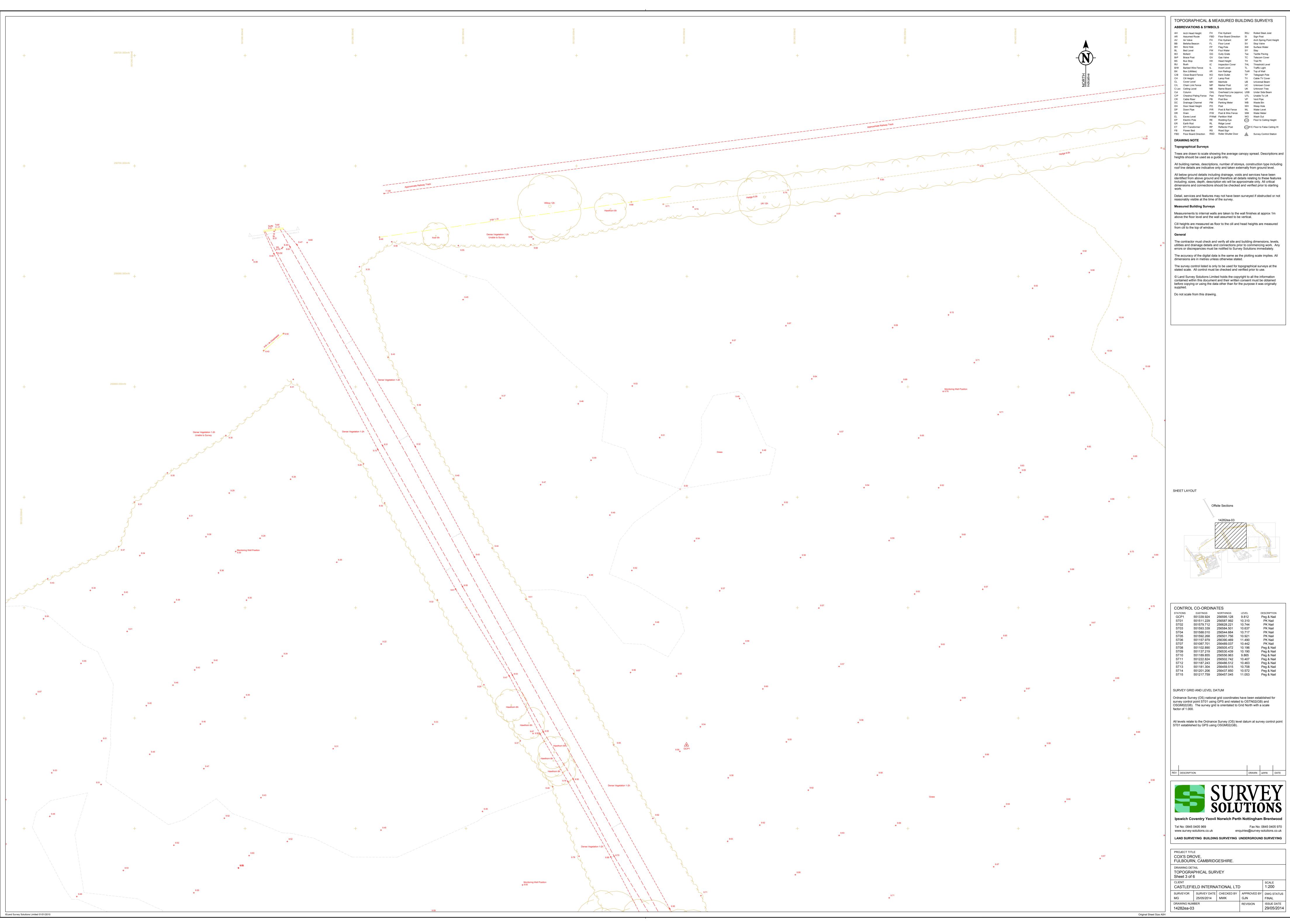
Measurements to internal walls are taken to the wall finishes at approx 1m above the floor level and the wall assumed to be vertical. Cill heights are measured as floor to the cill and head heights are measured from cill to the top of window. General

The contractor must check and verify all site and building dimensions, levels, utilities and drainage details and connections prior to commencing work. Any errors or discrepancies must be notified to Survey Solutions immediately. The accuracy of the digital data is the same as the plotting scale implies. All dimensions are in metres unless otherwise stated. The survey control listed is only to be used for topographical surveys at the stated scale. All control must be checked and verified prior to use. © Land Survey Solutions Limited holds the copyright to all the information contained within this document and their written consent must be obtained before copyring or using the data other than for the purpose it was originally current of the survey of t supplied. Do not scale from this drawing.

SHEET LAYOUT Offsite Sections

CONTROL CO-ORDINATES						
STATIONS	EASTINGS	NORTHINGS	LEVEL	DESCRIPTION		
GCP1	551339.924	256595.128	9.812	Peg & Nail		
ST01	551511.229	256587.992	10.310	PK Nail		
ST02	551579.712	256628.221	10.744	PK Nail		
ST03	551593.339	256584.501	10.637	PK Nail		
ST04	551588.010	256544.664	10.717	PK Nail		
ST05	551592.268	256501.756	10.921	PK Nail		
ST06	551157.979	256390.469	11.490	PK Nail		
ST07	551087.701	256489.037	10.442	PK Nail		
ST08	551102.890	256505.472	10.196	Peg & Nail		
ST09	551137.219	256530.439	10.190	Peg & Nail		
ST10	551189.855	256556.963	9.865	Peg & Nail		
ST11	551222.824	256502.742	10.407	Peg & Nail		
ST12	551187.243	256486.512	10.463	Peg & Nail		
ST13	551181.304	256459.515	10.708	Peg & Nail		
ST14	551201.206	256437.850	10.572	Peg & Nail		
ST15	551217.759	256457.045	11.053	Peg & Nail		

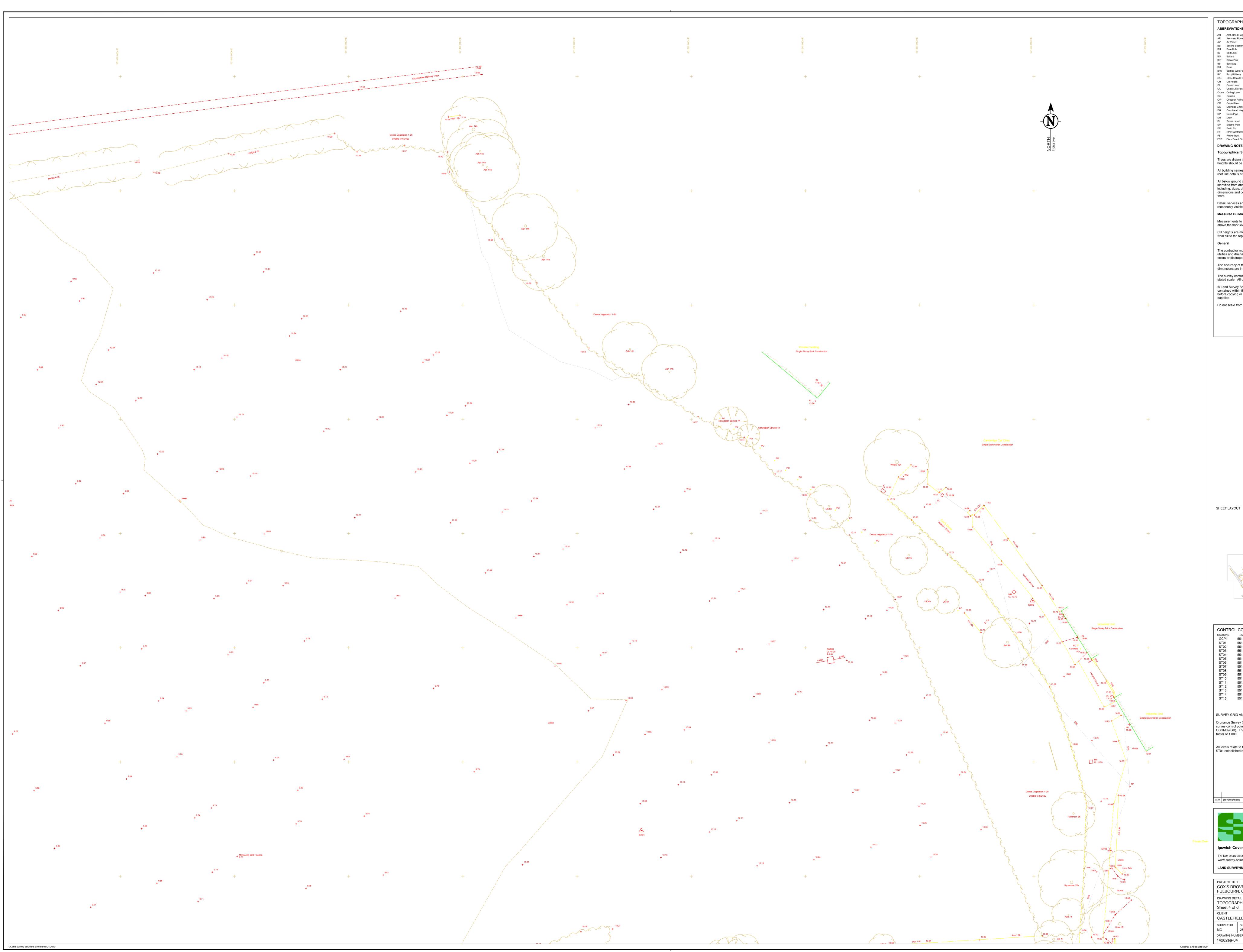
SURVEY GRID AND LEVEL DATUM Ordnance Survey (OS) national grid coordinates have been established for survey control point ST01 using GPS and related to OSTN02(GB) and OSGM02(GB). The survey grid is orientated to Grid North with a scale factor of 1.000.


All levels relate to the Ordnance Survey (OS) level datum at survey control point ST01 established by GPS using OSGM02(GB).

DRAWN APPR DATE

PROJECT TITLE COX'S DROVE, FULBOURN, CAMBRIDGESHIRE. DRAWING DETAIL TOPOGRAPHICAL SURVEY Sheet 2 of 6 CLIENT

SCALE 1:200 CASTLEFIELD INTERNATIONAL LTD SURVEYOR SURVEY DATE CHECKED BY APPROVED BY DWG STATUS MG 25/05/2014 MWK GJN FINAL REVISION ISSUE DATE 29/05/2014 DRAWING NUMBER 14282ea-02



SBI	REVIATIONS & ST	WBOL	5		
I	Arch Head Height	FH	Fire Hydrant	RSJ	Rolled Steel Joist
	Assumed Route	FBD	Floor Board Direction	SI	Sign Post
	Air Valve	FH	Fire Hydrant	SP	Arch Spring Point Height
	Belisha Beacon	FL	Floor Level	SV	Stop Valve
	Bore Hole	FP	Flag Pole	SW	Surface Water
	Bed Level	FW	Foul Water	SY	Stay
)	Bollard	GG	Gully Grate	Tac	Tactile Paving
2	Brace Post	GV	Gas Valve	TC	Telecom Cover
	Bus Stop	HH	Head Height	ΤН	Trial Pit
	Bush	IC	Inspection Cover	THL	Threshold Level
N	Barbed Wire Fence	IL	Invert Level	TL	Traffic Light
	Box (Utilities)	I/R	Iron Railings	ToW	Top of Wall
3	Close Board Fence	KO	Kerb Outlet	TP	Telegraph Pole
I	Cill Height	LP	Lamp Post	TV	Cable TV Cover
	Cover Level	MH	Manhole	UB	Universal Beam
-	Chain Link Fence	MP	Marker Post	UC	Unknown Cover
_ev	Ceiling Level	NB	Name Board	UK	Unknown Tree
I	Column	OHL	Overhead Line (approx)	USB	Under Side Beam
2	Chestnut Paling Fence	Pan	Panel Fence	UTL	Unable To Lift
2	Cable Riser	PB	Post Box	VP	Vent Pipe
;	Drainage Channel	PM	Parking Meter	WB	Waste Bin
I	Door Head Height	PO	Post	WH	Weep Hole
	Down Pipe	P/R	Post & Rail Fence	WL	Water Level
1	Drain	P/W	Post & Wire Fence	WM	Water Meter
	Eaves Level	P/Wall	Partition Wall	WO	Wash Out
	Electric Pole	RE	Rodding Eye	(XXX)	Floor to Ceiling Height
	Earth Rod	RL	Ridge Level	-	
	EP+Transformer	RP	Reflector Post	(XX)F/C	Floor to False Ceiling Ht
	Flower Bed	RS	Road Sign	•	
D	Floor Board Direction	RSD	Roller Shutter Door	ふ	Survey Control Station

CONTROL CO-ORDINATES							
STATIONS	EASTINGS	NORTHINGS	LEVEL	DESCRIPTION			
GCP1	551339.924	256595.128	9.812	Peg & Nail			
ST01	551511.229	256587.992	10.310	PK Nail			
ST02	551579.712	256628.221	10.744	PK Nail			
ST03	551593.339	256584.501	10.637	PK Nail			
ST04	551588.010	256544.664	10.717	PK Nail			
ST05	551592.268	256501.756	10.921	PK Nail			
ST06	551157.979	256390.469	11.490	PK Nail			
ST07	551087.701	256489.037	10.442	PK Nail			
ST08	551102.890	256505.472	10.196	Peg & Nail			
ST09	551137.219	256530.439	10.190	Peg & Nail			
ST10	551189.855	256556.963	9.865	Peg & Nail			
ST11	551222.824	256502.742	10.407	Peg & Nail			
ST12	551187.243	256486.512	10.463	Peg & Nail			
ST13	551181.304	256459.515	10.708	Peg & Nail			
ST14	551201.206	256437.850	10.572	Peg & Nail			
ST15	551217.759	256457.045	11.053	Peg & Nail			

DRAWN APPR DATE דרד דרד 7

Fax No: 0845 0405 970 enquiries@survey-solutions.co.uk

TOPOGRAPHICAL & MEASURED BUILDING SURVEYS

ABB	REVIATIONS & SY	MBOL	s		
AH	Arch Head Height	FH	Fire Hydrant	RSJ	Rolled Steel Joist
AR	Assumed Route	FBD	Floor Board Direction	SI	Sign Post
AV	Air Valve	FH	Fire Hydrant	SP	Arch Spring Point Heigh
BB	Belisha Beacon	FL	Floor Level	SV	Stop Valve
BH	Bore Hole	FP	Flag Pole	SW	Surface Water
BL	Bed Level	FW	Foul Water	SY	Stay
BO	Bollard	GG	Gully Grate	Tac	Tactile Paving
BrP	Brace Post	GV	Gas Valve	тс	Telecom Cover
BS	Bus Stop	HH	Head Height	ΤН	Trial Pit
BU	Bush	IC	Inspection Cover	THL	Threshold Level
B/W	Barbed Wire Fence	IL	Invert Level	TL	Traffic Light
BX	Box (Utilities)	I/R	Iron Railings	ToW	Top of Wall
C/B	Close Board Fence	KO	Kerb Outlet	TP	Telegraph Pole
СН	Cill Height	LP	Lamp Post	TV	Cable TV Cover
CL	Cover Level	MH	Manhole	UB	Universal Beam
C/L	Chain Link Fence	MP	Marker Post	UC	Unknown Cover
C-Lev	Ceiling Level	NB	Name Board	UK	Unknown Tree
Col	Column	OHL	Overhead Line (approx)	USB	Under Side Beam
C/P	Chestnut Paling Fence	Pan	Panel Fence	UTL	Unable To Lift
CR	Cable Riser	PB	Post Box	VP	Vent Pipe
DC	Drainage Channel	PM	Parking Meter	WB	Waste Bin
DH	Door Head Height	PO	Post	WH	Weep Hole
DP	Down Pipe	P/R	Post & Rail Fence	WL	Water Level
DR	Drain	P/W	Post & Wire Fence	WM	Water Meter
EL	Eaves Level	P/Wall	Partition Wall	WO	Wash Out
EP	Electric Pole	RE	Rodding Eye	(XXX)	Floor to Ceiling Height
ER	Earth Rod	RL	Ridge Level	-	
ET	EP+Transformer	RP	Reflector Post	(XX)F/C	Floor to False Ceiling H
FB	Flower Bed	RS	Road Sign	-	
FBD	Floor Board Direction	RSD	Roller Shutter Door	A	Survey Control Station

DRAWING NOTE Topographical Surveys

Trees are drawn to scale showing the average canopy spread. Descriptions and heights should be used as a guide only. All building names, descriptions, number of storeys, construction type including roof line details are indicative only and taken externally from ground level.

All below ground details including drainage, voids and services have been identified from above ground and therefore all details relating to these features including; sizes, depth, description etc will be approximate only. All critical dimensions and connections should be checked and verified prior to starting work.

Detail, services and features may not have been surveyed if obstructed or not reasonably visible at the time of the survey. Measured Building Surveys

Measurements to internal walls are taken to the wall finishes at approx 1m above the floor level and the wall assumed to be vertical. Cill heights are measured as floor to the cill and head heights are measured from cill to the top of window. General

The contractor must check and verify all site and building dimensions, levels, utilities and drainage details and connections prior to commencing work. Any errors or discrepancies must be notified to Survey Solutions immediately. The accuracy of the digital data is the same as the plotting scale implies. All dimensions are in metres unless otherwise stated. The survey control listed is only to be used for topographical surveys at the stated scale. All control must be checked and verified prior to use. © Land Survey Solutions Limited holds the copyright to all the information contained within this document and their written consent must be obtained before copying or using the data other than for the purpose it was originally guardied. supplied. Do not scale from this drawing.

SHEET LAYOUT Offsite Sections

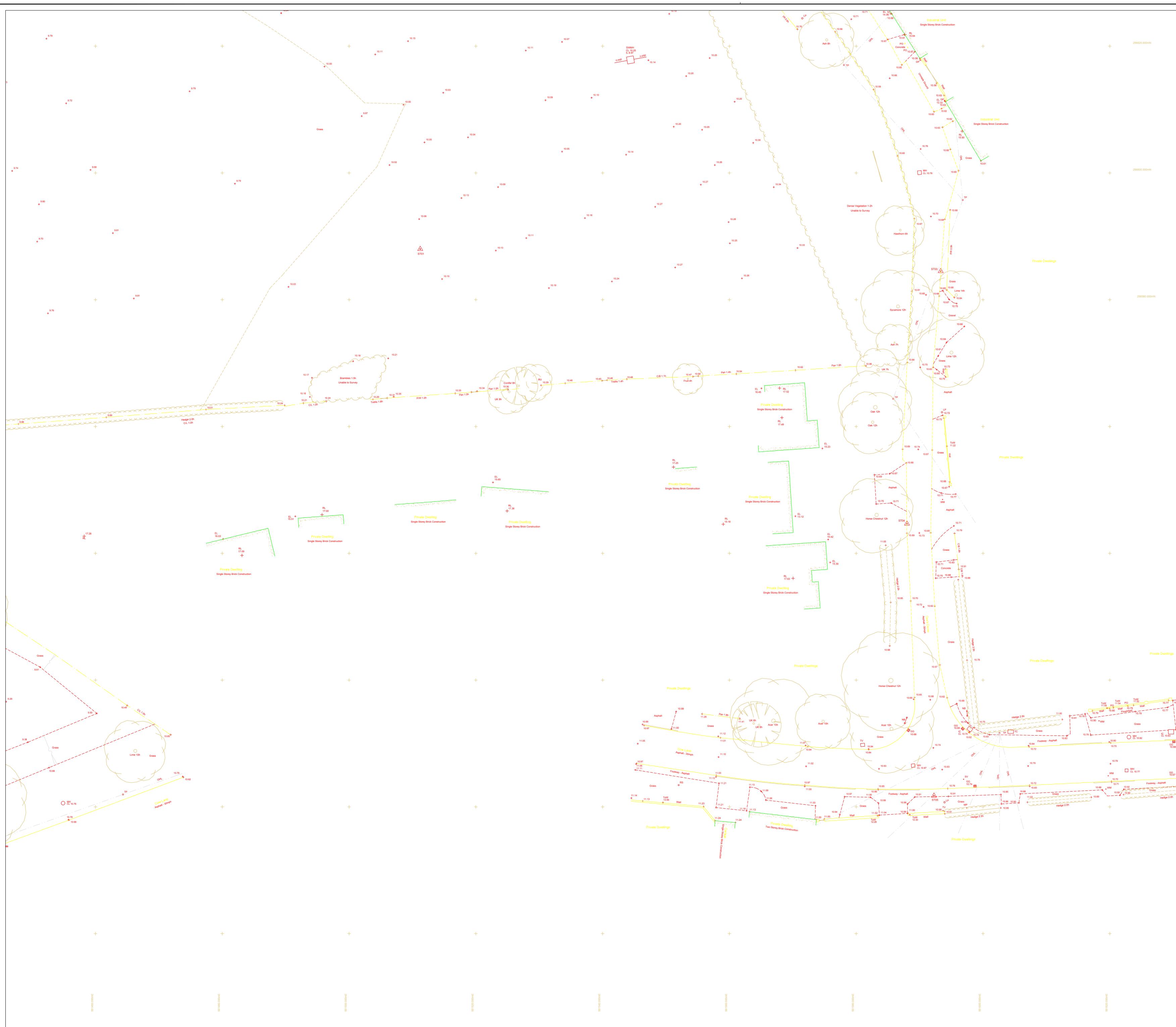
STATIONS	EASTINGS	NORTHINGS	LEVEL	DESCRIPTION
GCP1	551339.924	256595.128	9.812	Peg & Nail
ST01	551511.229	256587.992	10.310	PK Nail
ST02	551579.712	256628.221	10.744	PK Nail
ST03	551593.339	256584.501	10.637	PK Nail
ST04	551588.010	256544.664	10.717	PK Nail
ST05	551592.268	256501.756	10.921	PK Nail
ST06	551157.979	256390.469	11.490	PK Nail
ST07	551087.701	256489.037	10.442	PK Nail
ST08	551102.890	256505.472	10.196	Peg & Nail
ST09	551137.219	256530.439	10.190	Peg & Nail
ST10	551189.855	256556.963	9.865	Peg & Nail
ST11	551222.824	256502.742	10.407	Peg & Nail
ST12	551187.243	256486.512	10.463	Peg & Nail
ST13	551181.304	256459.515	10.708	Peg & Nail
ST14	551201.206	256437.850	10.572	Peg & Nail
ST15	551217.759	256457.045	11.053	Peg & Nail

SURVEY GRID AND LEVEL DATUM Ordnance Survey (OS) national grid coordinates have been established for survey control point ST01 using GPS and related to OSTN02(GB) and OSGM02(GB). The survey grid is orientated to Grid North with a scale factor of 1.000.

All levels relate to the Ordnance Survey (OS) level datum at survey control point ST01 established by GPS using OSGM02(GB).

DRAWN APPR DATE

SCALE 1:200



Tel No: 0845 0405 969 www.survey-solutions.co.uk enquiries@survey-solutions.co.uk LAND SURVEYING BUILDING SURVEYING UNDERGROUND SURVEYING

PROJECT TITLE COX'S DROVE, FULBOURN, CAMBRIDGESHIRE. DRAWING DETAIL TOPOGRAPHICAL SURVEY Sheet 4 of 6

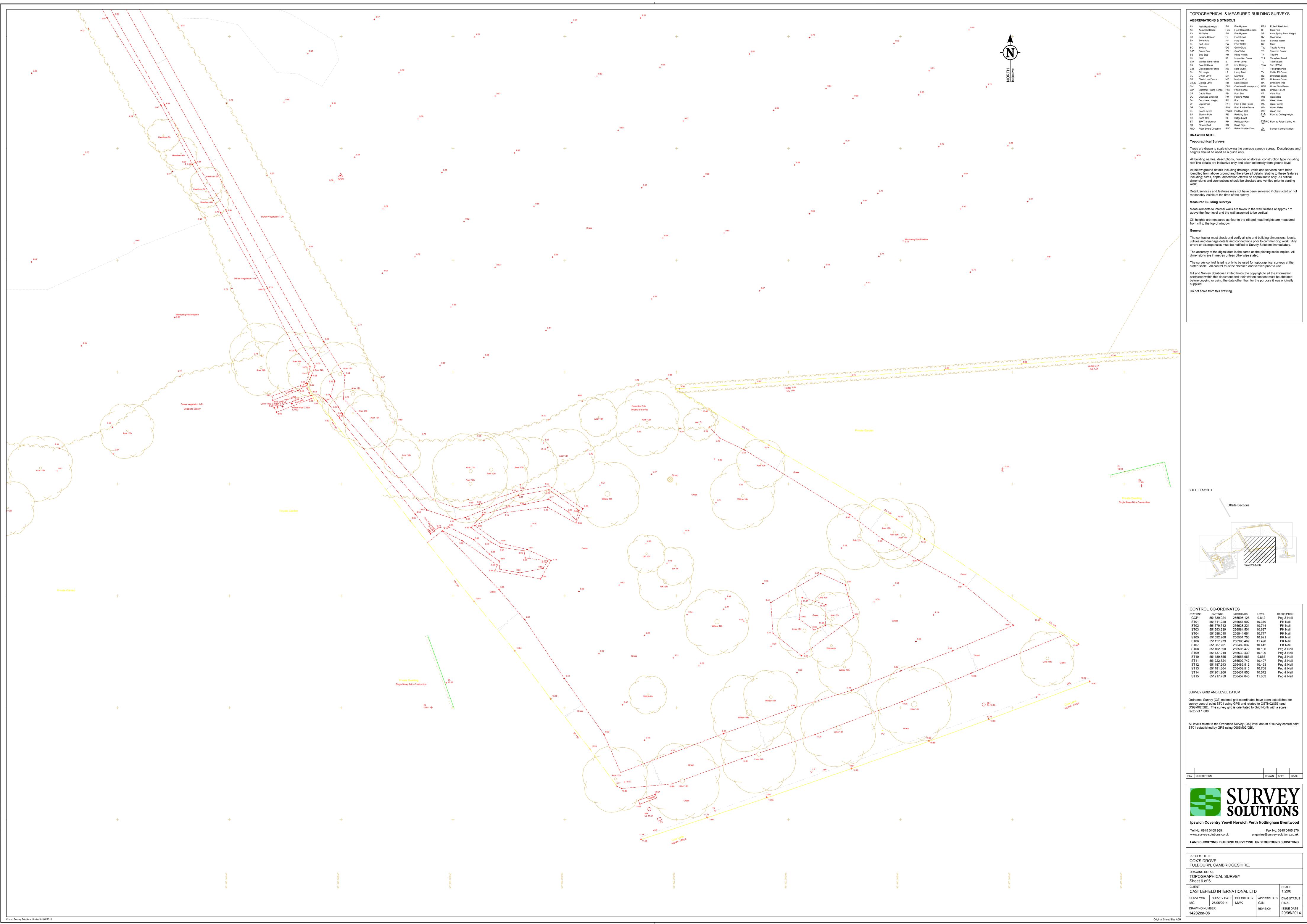
CLIENT CASTLEFIELD INTERNATIONAL LTD

SURVEYORSURVEY DATECHECKED BYAPPROVED BYDWG STATUSMG25/05/2014MWKGJNFINAL REVISION ISSUE DATE 29/05/2014 DRAWING NUMBER 14282ea-04

©Land Survey Solutions Limited 01/01/2010

+

O MH CL 10.82


---+ IC CL 10.83

Footway - Asphalt

256580.000mN

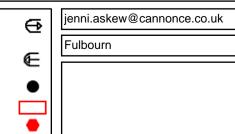
256600.000mN

יוטכ		NDOL	5		
	Arch Head Height	FH	Fire Hydrant	RSJ	Rolled Steel Joist
	Assumed Route	FBD	Floor Board Direction	SI	Sign Post
	Air Valve	FH	Fire Hydrant	SP	Arch Spring Point Height
	Belisha Beacon	FL	Floor Level	SV	Stop Valve
	Bore Hole	FP	Flag Pole	SW	Surface Water
	Bed Level	FW	Foul Water	SY	Stay
	Bollard	GG	Gully Grate	Tac	Tactile Paving
b	Brace Post	GV	Gas Valve	тс	Telecom Cover
	Bus Stop	нн	Head Height	TH	Trial Pit
	Bush	IC	Inspection Cover	THL	Threshold Level
V	Barbed Wire Fence	IL	Invert Level	TL	Traffic Light
	Box (Utilities)	I/R	Iron Railings	ToW	Top of Wall
3	Close Board Fence	KO	Kerb Outlet	TP	Telegraph Pole
	Cill Height	LP	Lamp Post	TV	Cable TV Cover
	Cover Level	MH	Manhole	UB	Universal Beam
	Chain Link Fence	MP	Marker Post	UC	Unknown Cover
.ev	Ceiling Level	NB	Name Board	UK	Unknown Tree
	Column	OHL	Overhead Line (approx)	USB	Under Side Beam
b	Chestnut Paling Fence	Pan	Panel Fence	UTL	Unable To Lift
	Cable Riser	PB	Post Box	VP	Vent Pipe
	Drainage Channel	PM	Parking Meter	WB	Waste Bin
	Door Head Height	PO	Post	WH	Weep Hole
	Down Pipe	P/R	Post & Rail Fence	WL	Water Level
	Drain	P/W	Post & Wire Fence	WM	Water Meter
	Eaves Level	P/Wall	Partition Wall	WO	Wash Out
	Electric Pole	RE	Rodding Eye	(XX)	Floor to Ceiling Height
	Earth Rod	RL	Ridge Level	0	
	EP+Transformer	RP	Reflector Post	(XX)F/C	Floor to False Ceiling Ht
	Flower Bed	RS	Road Sign	<u> </u>	
D	Floor Board Direction	RSD	Roller Shutter Door	\triangle	Survey Control Station

CONTROL CO-ORDINATES				
STATIONS	EASTINGS	NORTHINGS	LEVEL	DESCRIPTION
GCP1	551339.924	256595.128	9.812	Peg & Nail
ST01	551511.229	256587.992	10.310	PK Nail
ST02	551579.712	256628.221	10.744	PK Nail
ST03	551593.339	256584.501	10.637	PK Nail
ST04	551588.010	256544.664	10.717	PK Nail
ST05	551592.268	256501.756	10.921	PK Nail
ST06	551157.979	256390.469	11.490	PK Nail
ST07	551087.701	256489.037	10.442	PK Nail
ST08	551102.890	256505.472	10.196	Peg & Nail
ST09	551137.219	256530.439	10.190	Peg & Nail
ST10	551189.855	256556.963	9.865	Peg & Nail
ST11	551222.824	256502.742	10.407	Peg & Nail
ST12	551187.243	256486.512	10.463	Peg & Nail
ST13	551181.304	256459.515	10.708	Peg & Nail
ST14	551201.206	256437.850	10.572	Peg & Nail
ST15	551217.759	256457.045	11.053	Peg & Nail

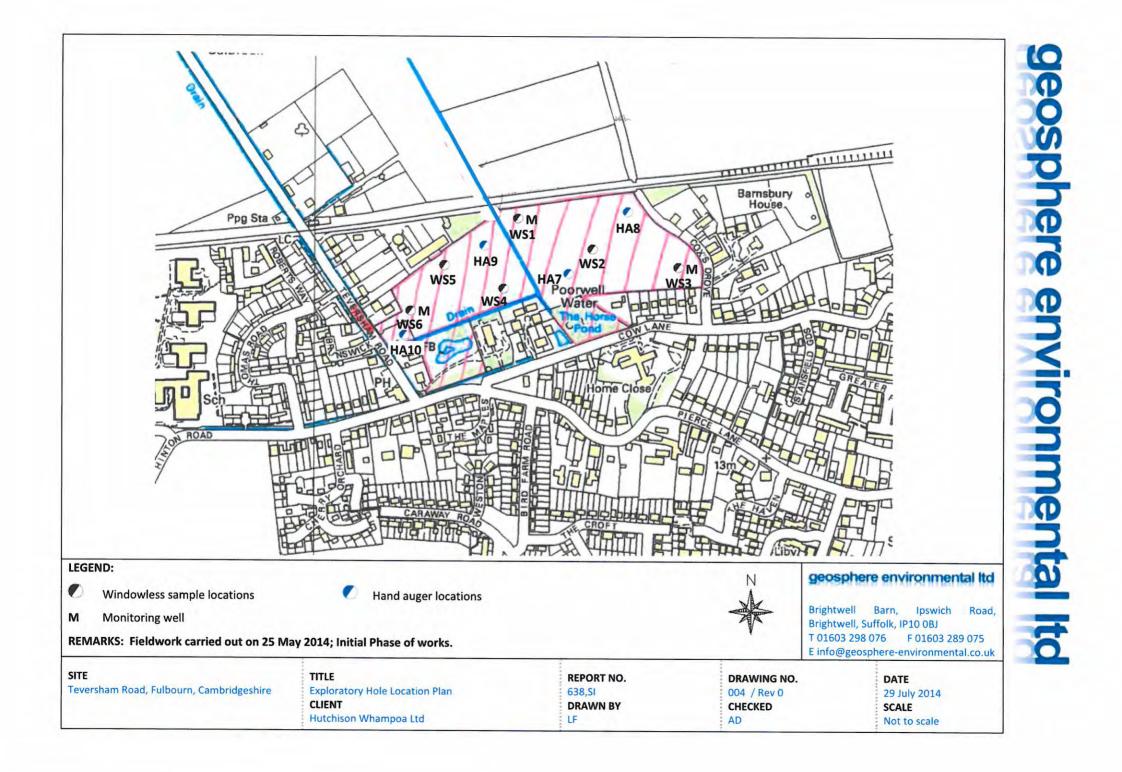
DRAWN APPR DATE

This plan is provided by Anglian Water pursuant its obligations under the Water Industry Act 1991 sections 198 or 199. It must be used in conjunction with any search results attached. The information on this plan is based on data currently recorded but position must be regarded as approximate. Service pipes, private sewers and drains are generally not shown. Users of this map are strongly advised to commission their own survey of the area shown on the plan before carrying out any works. The actual position of all apparatus MUST be established by trial holes. No liability whatsoever, including liability for negligence, is accepted by Anglian Water for any error or inaccuracy or omission, including the failure to accurately record, or record at all, the location of any water main, discharge pipe, sewer or disposal main or any item of apparatus. This information is valid for the date printed. The plan is produced by Anglian Water plant only. Any other uses of the map data or further copies is not permitted. This notice is not intended to exclude or restrict liability for death or personal injury resulting from negligence.


Combined Sewer

Rising Main (Colour denotes effluent type) Private Sewer (Colour denotes effluent type) Decomplication of Colour denotes effluent type) Decommissioned Sewer (Colour denotes effluent type)

Outfall (Colour denotes effluent type) Inlet (Colour denotes effluent type) Pumping Station

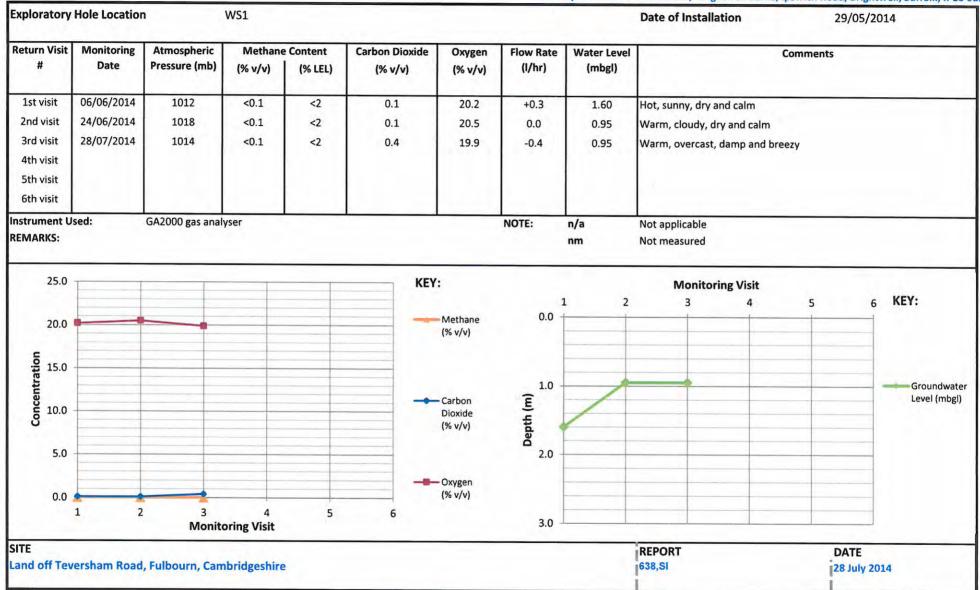


Manhole Reference	-	Northing	Liquid Type	Cover Level		Depth to Invert
201	551040	256302	F	-	-	-
301	551041	256363	F	11.753	8.873	2.88
302	551035	256341	F	-	-	-
501	551031	256582	F	10.198	6.956	3.242
502 301	551072 551146	256521 256389	F F	10.492 11.225	7.122 8.175	3.37 3.05
302	551102	256374	F	11.446	8.486	2.96
401	551108	256469	F	10.394	7.291	3.103
402	551145	256409	F	10.998	7.471	3.527
403	551171	256403	F	11.234	7.544	3.69
2401	551257	256427	F	11.04	7.76	3.28
2402	551266	256415	F	11.348	8.684	2.664
3301	551358	256393	F	11.951	9.165	2.786
3302	551381	256383	F	11.963	9.263	2.7
3303	551320	256346	F	-	-	-
3304	551327	256400	F	-	-	1.42
3401	551343	256456	F	11.082	7.992	3.09
1301	551409	256355	F	12.213	9.464	2.749
1302	551434	256342	F	12.344	9.565	2.779
1303	551467	256342	F	12.268	9.72	2.548
1304	551482	256351	F	12.29	9.781	-
401	551421	256481	F	10.849	8.199	2.65
5301	551507	256383	F	12.402	9.955	2.447
5302	551533	256385	F	12.631	10.077	2.554
5303	551589	256366	F	12.463	10.296	2.167
5304	551537	256323	F	-	-	-
5501	551511	256515	F	10.637	8.437	2.2
502	551590	256506	F	10.735	8.635	2.1
503	551592	256599	F	-	-	-
601	551580	256629	F	-	-	-
5602 301	551530	256668	F	-	-	-
301 3401	551630	256345	F F	12.576	10.464	2.112
6401 6501	551684 551638	256432 256508	F	- 10.556	- 8.876	- 1.68
5501 5502	551638	256508	F	10.556	9.193	1.68
7301	551697	256512	F	-	-	-
7301 7401	551784	256377	F	_	-	-
7401 7501	551703	256479	F	-	-	-
7502	551742	256513	F	- 11.392	- 9.452	- 1.94
3401	551827	256424	F	-	-	-
3402	551800	256433	F.	-	-	-
3501	551841	256510	F	11.936	9.976	1.96
9301	550971	256348	F	11.567	9.357	2.21
9302	550932	256346	F	11.561	9.601	1.96
9601	550965	256684	F	10.212	6.602	3.61
9602	550997	256633	F	10.362	6.762	3.6
			-			

Manhole Reference	Easting	Northing	Liquid Type	Cover Level	Depth to Invert

Manhole Reference	Easting	Northing	Liquid Type	Cover Level	Invert Level	Depth to Inver

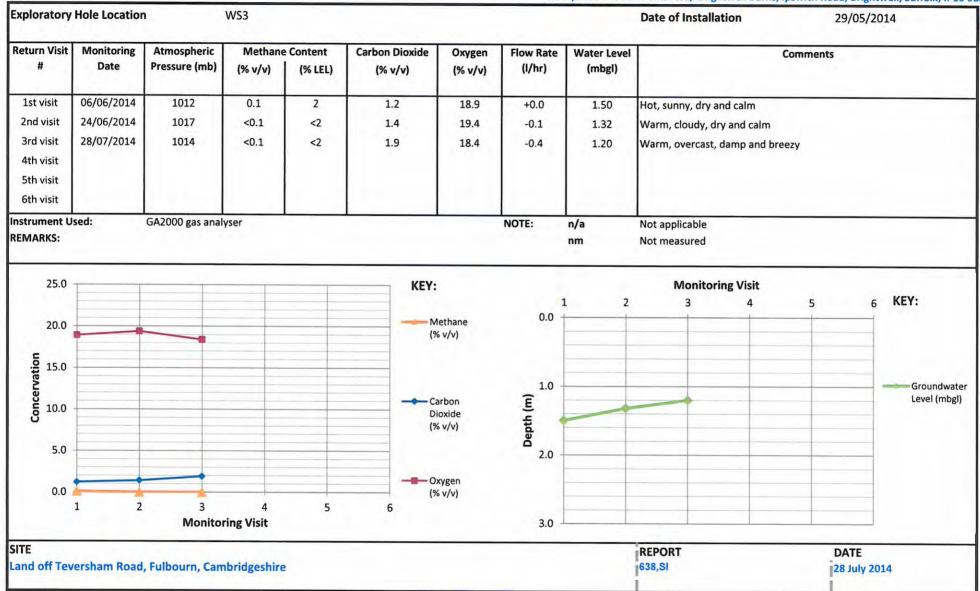
Manhole Reference	Fasting	Northing	Liquid Type	Cover Level	Invert Level	Depth to Invert
	Lusting					


APPENDIX 7 - GAS AND GROUNDWATER MONITORING DATA

638,SI - Report ,LF,PD,30-07-14,V1 - Draft

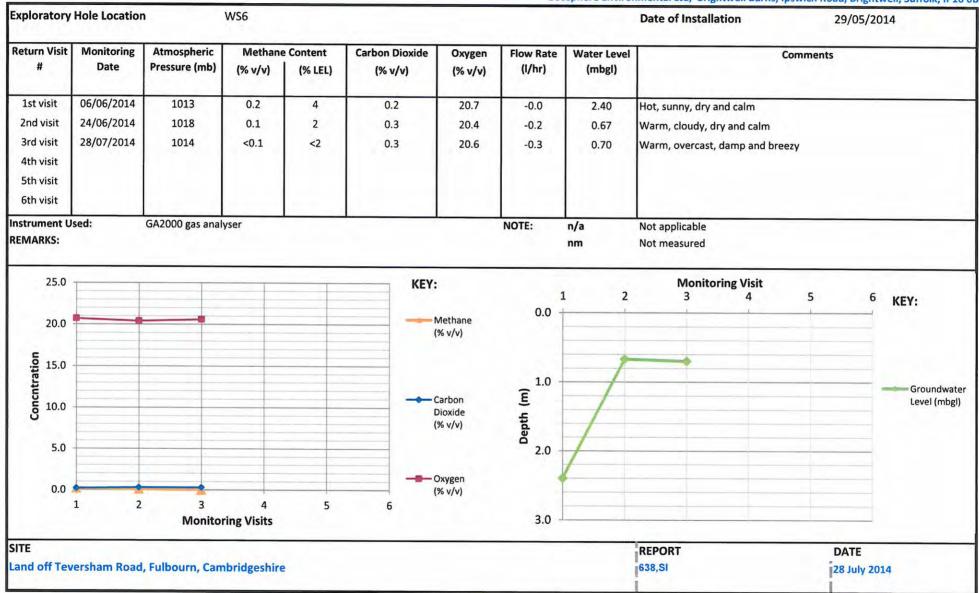
GROUND GAS AND GROUNDWATER MONITORING DATA

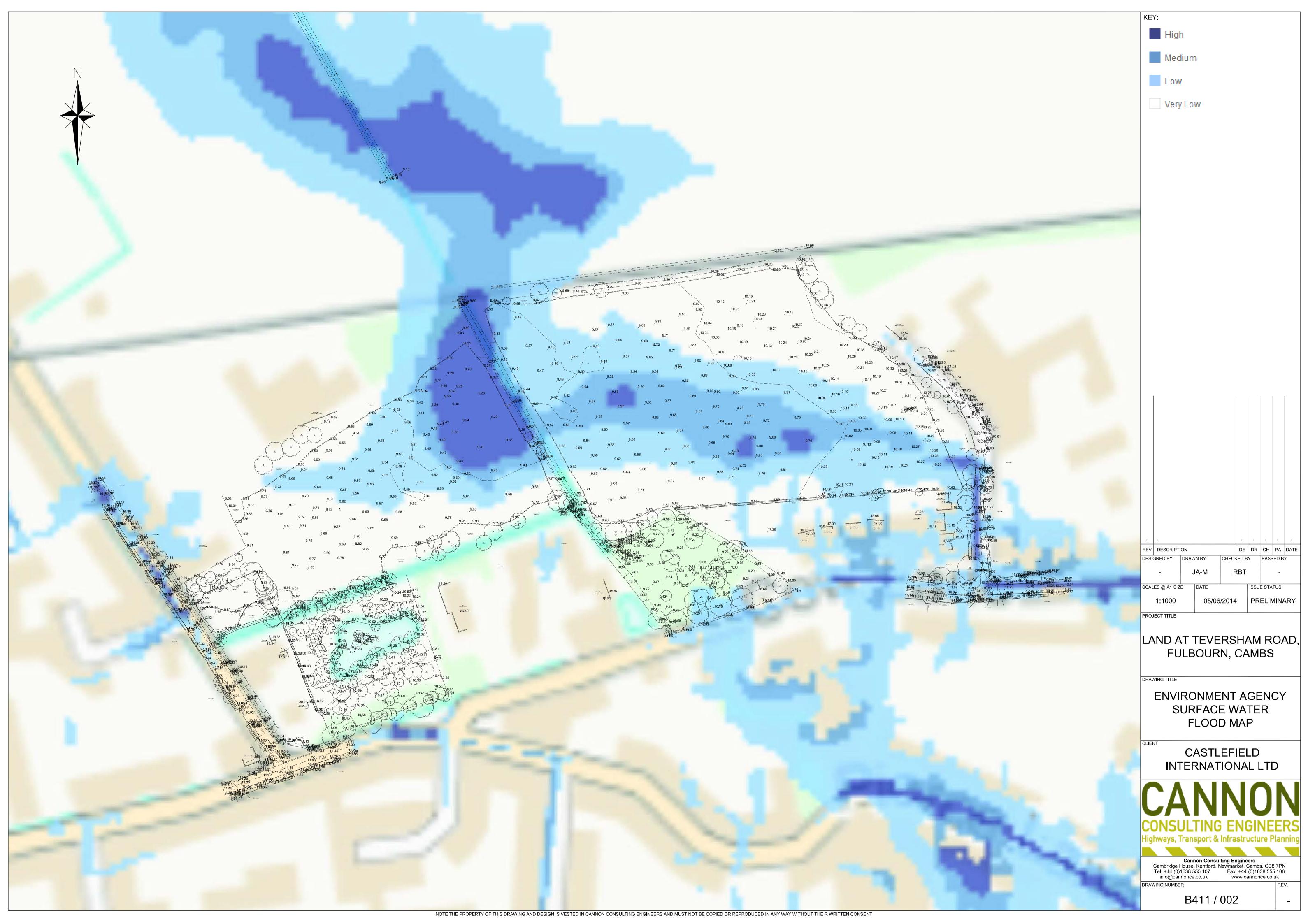
geosphere environmental Itd


Geosphere Environmental Ltd, Brightwell Barns, Ipswich Road, Brightwell, Suffolk, IP10 OBJ

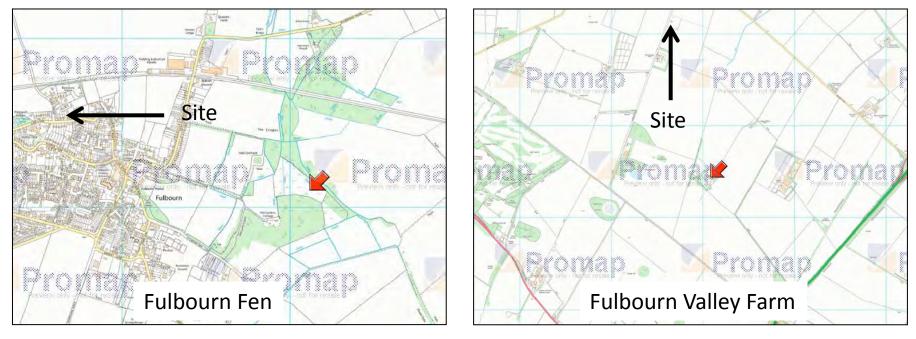
GROUND GAS AND GROUNDWATER MONITORING DATA

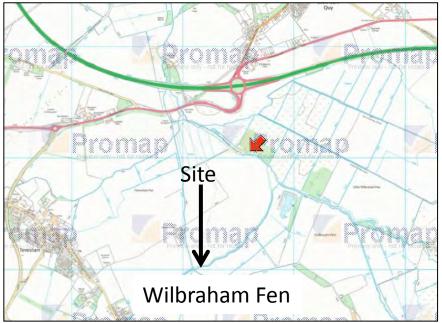
geosphere environmental Itd

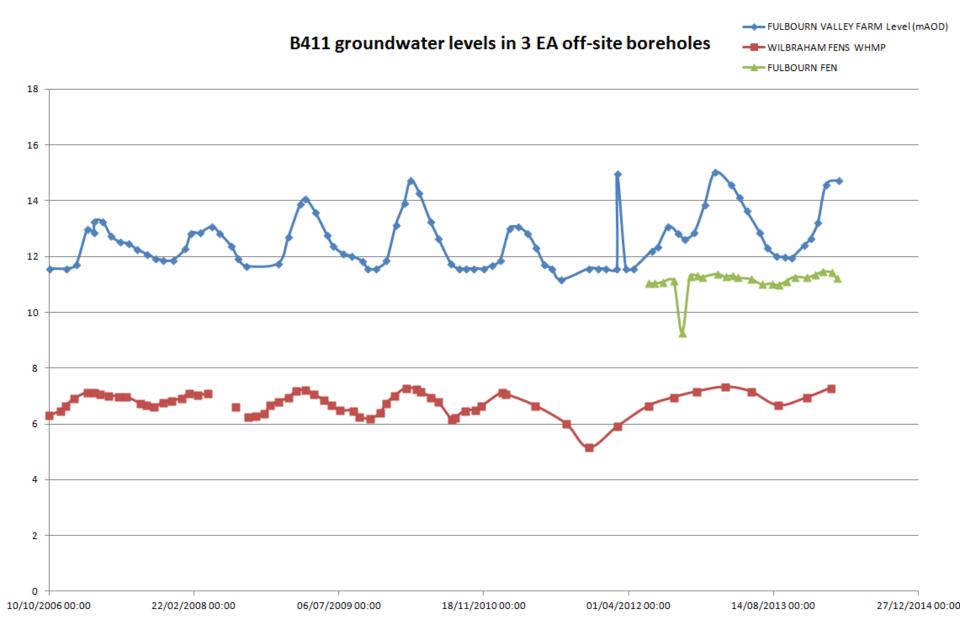

Geosphere Environmental Ltd, Brightwell Barns, Ipswich Road, Brightwell, Suffolk, IP10 0BJ



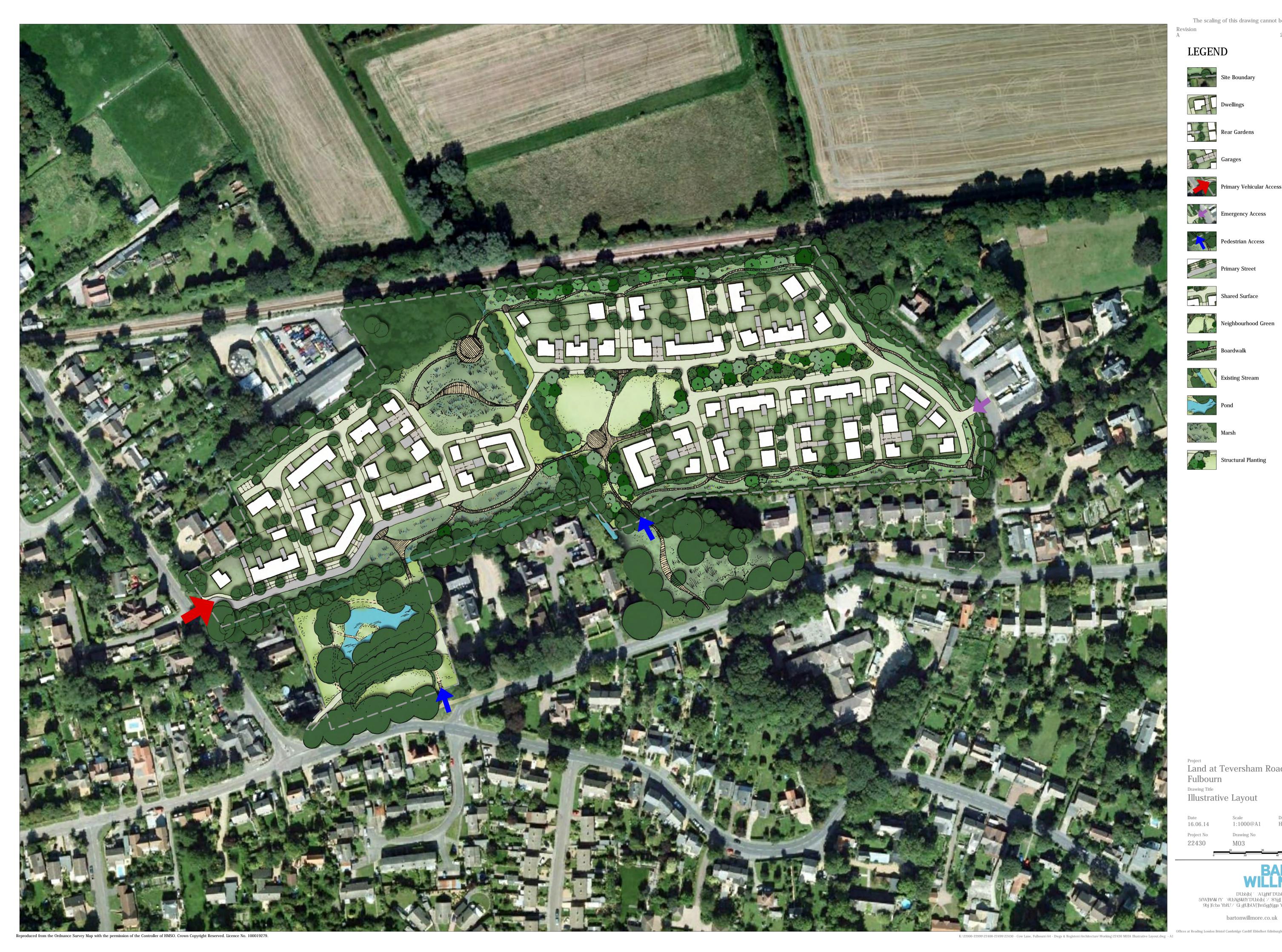
GROUND GAS AND GROUNDWATER MONITORING DATA

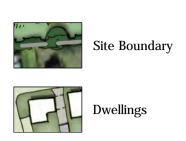

geosphere environmental Itd


Geosphere Environmental Ltd, Brightwell Barns, Ipswich Road, Brightwell, Suffolk, IP10 0BJ



EA groundwater borehole locations




B Proposed Site

Proposed Development Layout Surface Water Management Plan WinDes Simulations – Basin A WinDes Simulations –Basin B WinDes Simulations –Basin C Greenfield Runoff Rates

The scaling of this drawing cannot be assured Date Drn Ckd 25.07.14 HS CA

LEGEND

Rear Gardens

Garages

Primary Vehicular Access

Emergency Access

Pedestrian Access

ALC I

Primary Street

Shared Surface

Neighbourhood Green

Boardwalk

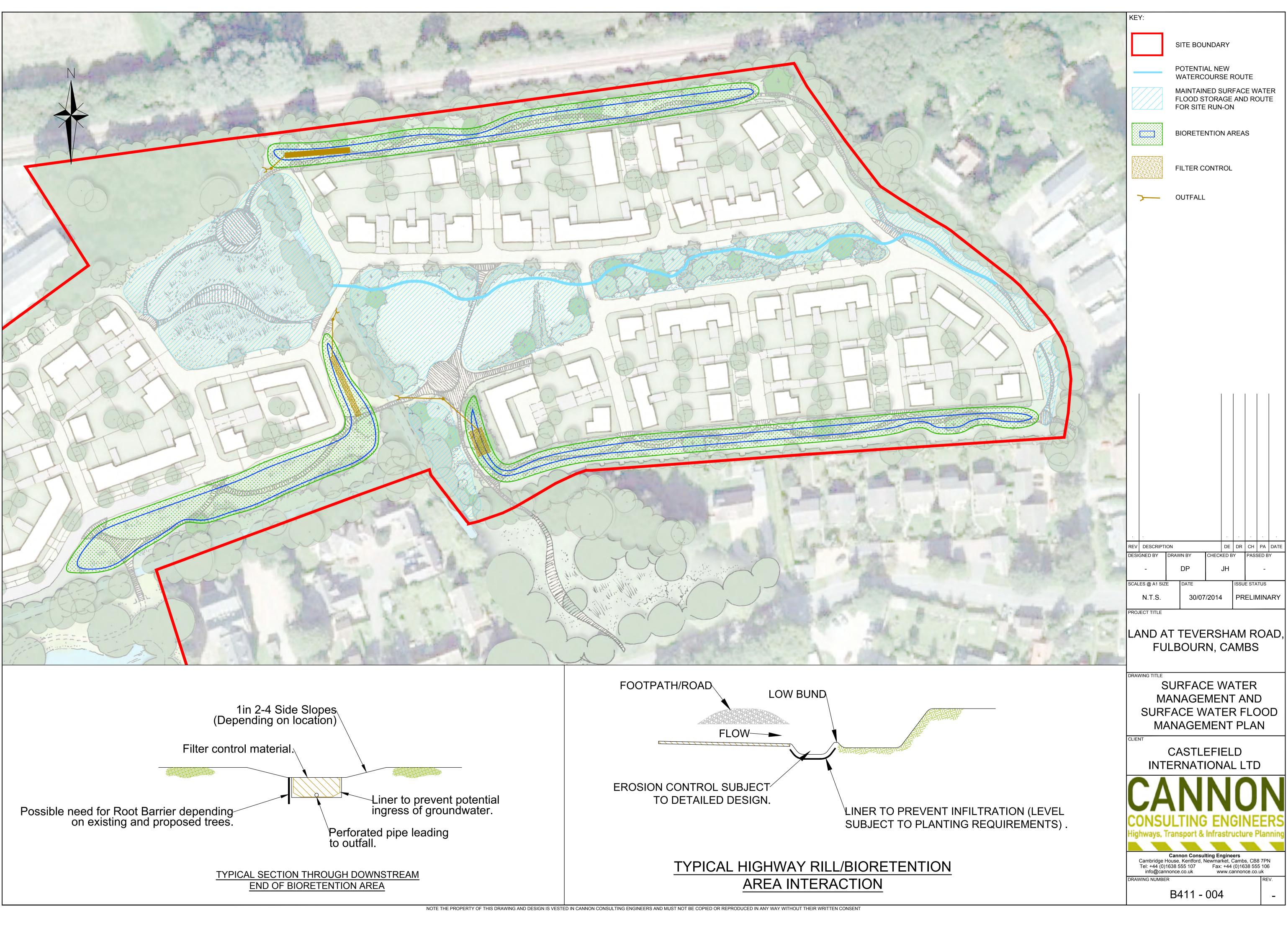
Existing Stream

Pond

the second second Marsh

Project Land at Teversham Road Fulbourn Drawing Title
Illustrative Layout

Date 16.06.14Project No 22430


Scale 1:1000@A1 Drawing No M03

HS

Drawn by Check by CA Revision

ester Solihull

Cannon Consulting Engineers		Page 1
Cambridge House		
Lanwades Business Park		
Kentford CB8 7PN		THERE ON
Date 29/07/2014 14:11	Designed by james howard	Dentrece
File B411 catchment A bio	Checked by	
Micro Drainage	Source Control 2013.1.1	

Summary of Results for 100 year Return Period (+30%)

Half Drain Time exceeds 7 days.

Outflow is too low. Design is unsatisfactory.

	Storm	Max	Max	Max	1	Max	Max	Ма	x	Max	Status
	Event	Level	Depth	Infiltra	tion Con	ntrol	Overflow	Σ Out	flow	Volume	
		(m)	(m)	(1/s) (1	l/s)	(1/s)	(1/	's)	(m³)	
15	min Summer	99.594	0.194		0.0	0.1	0.0		0.1	298.5	ОК
30	min Summer	99.617	0.217		0.0	0.1	0.0		0.1	336.4	O K
60	min Summer	99.642	0.242		0.0	0.1	0.0		0.1	379.2	O K
120	min Summer	99.671	0.271		0.0	0.1	0.0		0.1	427.1	O K
180	min Summer	99.689	0.289		0.0	0.1	0.0		0.1	457.8	O K
240	min Summer	99.702	0.302		0.0	0.1	0.0		0.1	480.9	Flood Risk
360	min Summer	99.721	0.321		0.0	0.1	0.0		0.1	515.1	Flood Risk
480	min Summer	99.736	0.336		0.0	0.1	0.0		0.1	540.7	Flood Risk
600	min Summer	99.747	0.347		0.0	0.1	0.0		0.1	561.3	Flood Risk
720	min Summer	99.757	0.357		0.0	0.1	0.0		0.1	578.5	Flood Risk
960	min Summer	99.773	0.373		0.0	0.1	0.0		0.1	607.5	Flood Risk
1440	min Summer	99.796	0.396		0.0	0.2	0.0		0.2	650.0	Flood Risk
2160	min Summer	99.820	0.420		0.0	0.2	0.0		0.2	694.1	Flood Risk
2880	min Summer	99.837	0.437		0.0	0.2	0.0		0.2	725.9	Flood Risk
4320	min Summer	99.856	0.456		0.0	0.2	0.0		0.2	761.3	Flood Risk
	min Summer				0.0	0.2	0.0		0.2		Flood Risk
7200	min Summer	99.877	0.477		0.0	0.2	0.0		0.2	801.6	Flood Risk
	min Summer				0.0	0.2	0.0		0.2		Flood Risk
10080	min Summer	99.888	0.488		0.0	0.2	0.0		0.2	823.1	Flood Risk
	min Winter				0.0	0.1	0.0		0.1	334.3	O K
	min Winter				0.0	0.1	0.0		0.1		
60	min Winter				0.0	0.1	0.0			424.7	O K
		Stor					arge Ove				
		Event	E	(mm/nr)	Volume (m³)			lume m³\	(mi)	ns)	
					(m°)	(m	-) (m³)			
		L5 min	Summer	206 060	0.0			0 0			
			~				9.8	0.0		31	
				116.611	0.0		10.1	0.0		46	
	(50 min	Summer	116.611 65.734	0.0		10.1 21.0	0.0 0.0		46 76	
	(12	50 min 20 min	Summer Summer	116.611 65.734 37.054	0.0 0.0 0.0		10.1 21.0 21.8	0.0 0.0 0.0		46 76 136	
	12 18	50 min 20 min 30 min	Summer Summer Summer	116.611 65.734 37.054 26.498	0.0 0.0 0.0 0.0		10.1 21.0 21.8 22.2	0.0 0.0 0.0 0.0		46 76 136 196	
	12 12 24	50 min 20 min 30 min 40 min	Summer Summer Summer Summer	116.611 65.734 37.054 26.498 20.887	0.0 0.0 0.0 0.0 0.0		10.1 21.0 21.8 22.2 22.5	0.0 0.0 0.0 0.0 0.0		46 76 136 196 256	
	12 12 24 30	50 min 20 min 30 min 40 min 50 min	Summer Summer Summer Summer	116.611 65.734 37.054 26.498 20.887 14.937	0.0 0.0 0.0 0.0 0.0 0.0		10.1 21.0 21.8 22.2 22.5 22.9	0.0 0.0 0.0 0.0 0.0 0.0		46 76 136 196 256 376	
	12 12 24 3(48	50 min 20 min 30 min 40 min 50 min 30 min	Summer Summer Summer Summer Summer	116.611 65.734 37.054 26.498 20.887 14.937 11.774	0.0 0.0 0.0 0.0 0.0 0.0 0.0		10.1 21.0 21.8 22.2 22.5 22.9 23.1	0.0 0.0 0.0 0.0 0.0 0.0 0.0		46 76 136 196 256 376 496	
	12 18 24 30 48 60	50 min 20 min 30 min 40 min 50 min 30 min 00 min	Summer Summer Summer Summer Summer Summer	116.611 65.734 37.054 26.498 20.887 14.937 11.774 9.790	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		10.1 21.0 21.8 22.2 22.5 22.9 23.1 23.3	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		46 76 136 196 256 376 496 616	
	12 18 24 30 48 60 72	50 min 20 min 30 min 40 min 50 min 30 min 20 min	Summer Summer Summer Summer Summer Summer Summer	116.611 65.734 37.054 26.498 20.887 14.937 11.774 9.790 8.420	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		10.1 21.0 21.8 22.2 22.5 22.9 23.1 23.3 23.3	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		46 76 136 196 256 376 496 616 736	
	12 18 22 30 48 60 72 90	50 min 20 min 30 min 40 min 50 min 30 min 20 min 50 min	Summer Summer Summer Summer Summer Summer Summer Summer	116.611 65.734 37.054 26.498 20.887 14.937 11.774 9.790 8.420 6.647	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		10.1 21.0 21.8 22.2 22.5 22.9 23.1 23.3 23.3 23.3	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		46 76 136 256 376 496 616 736 976	
	(12 22 30 48 60 72 90 14	50 min 20 min 30 min 40 min 50 min 30 min 20 min 50 min 40 min	Summer Summer Summer Summer Summer Summer Summer Summer Summer	116.611 65.734 37.054 26.498 20.887 14.937 11.774 9.790 8.420 6.647 4.763	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		10.1 21.0 21.8 22.2 22.5 22.9 23.1 23.3 23.3 23.3 23.3 23.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		46 76 136 256 376 496 616 736 976 1454	
	12 18 24 36 48 60 72 96 144 216	50 min 20 min 30 min 40 min 50 min 30 min 20 min 50 min 40 min 50 min	Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	116.611 65.734 37.054 26.498 20.887 14.937 11.774 9.790 8.420 6.647 4.763 3.413	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		10.1 21.0 21.8 22.2 22.5 22.9 23.1 23.3 23.3 23.3 23.0 48.4	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		46 76 136 256 376 496 616 736 976 1454 2176	
	12 12 24 36 48 60 72 96 144 21 288	50 min 20 min 30 min 40 min 50 min 30 min 20 min 50 min 40 min 50 min 30 min	Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	$116.611\\65.734\\37.054\\26.498\\20.887\\14.937\\11.774\\9.790\\8.420\\6.647\\4.763\\3.413\\2.694$	$\begin{array}{c} 0 & . \\$		10.1 21.0 21.8 22.2 22.5 22.9 23.1 23.3 23.3 23.3 23.3 23.0 48.4 47.7	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		46 76 136 256 376 496 616 736 976 1454 2176 2892	
	12 18 24 36 48 60 72 96 144 216 288 432	50 min 20 min 30 min 40 min 50 min 30 min 20 min 50 min 40 min 50 min 30 min 20 min	Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	116.611 65.734 37.054 26.498 20.887 14.937 11.774 9.790 8.420 6.647 4.763 3.413 2.694 1.907	$\begin{array}{c} 0 & . \\$		10.1 21.0 21.8 22.2 22.5 22.9 23.1 23.3 23.3 23.3 23.3 23.0 48.4 47.7 45.4	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		46 76 136 256 376 496 616 736 976 1454 2176 2892 4332	
	12 18 24 36 48 60 72 96 144 216 288 432 576	50 min 20 min 30 min 40 min 50 min 30 min 20 min 50 min 50 min 50 min 20 min 50 min 50 min	Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	116.611 65.734 37.054 26.498 20.887 14.937 11.774 9.790 8.420 6.647 4.763 3.413 2.694 1.907 1.493	$\begin{array}{c} 0 & . \\ 0 & . \\ 0 \\ 0 & . \\ 0 \\ 0 & . \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$		10.1 21.0 21.8 22.2 22.5 22.9 23.1 23.3 23.3 23.3 23.3 23.0 48.4 47.7 45.4 98.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		46 76 136 256 376 496 616 736 976 1454 2176 2892	
	12 18 24 36 48 60 72 96 144 216 288 432 576 720	50 min 20 min 30 min 40 min 50 min 30 min 20 min 50 min 40 min 50 min 30 min 20 min	Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	116.611 65.734 37.054 26.498 20.887 14.937 11.774 9.790 8.420 6.647 4.763 3.413 2.694 1.907 1.493 1.234	$\begin{array}{c} 0 & . \\ 0 & . \\ 0 \\ 0 & . \\ 0 \\ 0 & . \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$		10.1 21.0 21.8 22.2 22.5 22.9 23.1 23.3 23.3 23.3 23.0 48.4 47.7 45.4 98.0 95.7			46 76 136 256 376 496 616 736 976 1454 2176 2892 4332 5776 7208	
	12 18 24 36 48 60 72 96 144 216 288 432 576 720 864	50 min 20 min 30 min 40 min 50 min 30 min 20 min 50 min 50 min 30 min 20 min 50 min 50 min 50 min	Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	116.611 65.734 37.054 26.498 20.887 14.937 11.774 9.790 8.420 6.647 4.763 3.413 2.694 1.907 1.493	$\begin{array}{c} 0 & . \\ 0 & . \\ 0 \\ 0 & . \\ 0 \\ 0 & . \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$		10.1 21.0 21.8 22.2 22.5 22.9 23.1 23.3 23.3 23.3 23.0 48.4 47.7 45.4 98.0 95.7 93.0			46 76 136 256 376 496 616 736 976 1454 2176 2892 4332 5776	
	12 18 24 36 48 60 72 96 144 216 288 432 576 720 864 1008	50 min 20 min 30 min 40 min 50 min 30 min 20 min 50 min 50 min 50 min 20 min 50 min 50 min 50 min 50 min 50 min 50 min	Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	116.611 65.734 37.054 26.498 20.887 14.937 11.774 9.790 8.420 6.647 4.763 3.413 2.694 1.907 1.493 1.234 1.057	$\begin{array}{c} 0 & . \\ 0 & . \\ 0 \\ 0 & . \\ 0 \\ 0 & . \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$		10.1 21.0 21.8 22.2 22.5 22.9 23.1 23.3 23.3 23.3 23.0 48.4 47.7 45.4 98.0 95.7			46 76 136 256 376 496 616 736 976 1454 2176 2892 4332 5776 7208 8648	
	12 18 24 36 48 60 72 96 144 216 288 432 576 720 864 1008	50 min 20 min 30 min 40 min 50 min 30 min 20 min 50 min 50 min 50 min 20 min 50	Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	$116.611\\65.734\\37.054\\26.498\\20.887\\14.937\\11.774\\9.790\\8.420\\6.647\\4.763\\3.413\\2.694\\1.907\\1.493\\1.234\\1.057\\0.927$	$\begin{array}{c} 0 & . \\$		10.1 21.0 21.8 22.2 22.5 22.9 23.1 23.3 23.3 23.3 23.0 48.4 47.7 45.4 98.0 95.7 93.0 90.0			46 76 136 256 376 496 616 736 976 1454 2176 2892 4332 5776 7208 8648 .0088	
	12 18 24 36 48 60 72 96 144 216 288 432 576 720 864 1008	50 min 20 min 30 min 40 min 50 min 30 min 20 min 50	Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Winter Winter	116.611 65.734 37.054 26.498 20.887 14.937 11.774 9.790 8.420 6.647 4.763 3.413 2.694 1.907 1.493 1.234 1.057 0.927 206.868	$\begin{array}{c} 0 & . \\$		10.1 21.0 21.8 22.2 22.5 22.9 23.1 23.3 23.3 23.3 23.3 23.0 48.4 47.7 45.4 98.0 95.7 93.0 90.0 10.1			46 76 136 256 376 496 616 736 976 1454 2176 2892 4332 5776 7208 8648 .0088 31	
	12 18 24 36 48 60 72 96 144 216 288 432 576 720 864 1008	50 min 20 min 30 min 40 min 50 min 30 min 20 min 50	Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Winter Winter	$116.611\\65.734\\37.054\\26.498\\20.887\\14.937\\11.774\\9.790\\8.420\\6.647\\4.763\\3.413\\2.694\\1.907\\1.493\\1.234\\1.057\\0.927\\206.868\\116.611$	0.0 0.0		10.1 21.0 21.8 22.2 22.5 22.9 23.1 23.3 23.3 23.3 23.0 48.4 47.7 45.4 98.0 95.7 93.0 90.0 10.1 10.5 21.8			46 76 136 256 376 496 616 736 976 1454 2176 2892 4332 5776 7208 8648 .0088 31 46	

Fermt Icon Orbit (1/s) Curl (1/s) Orbit (1/s) Support (1/s) <ths< th=""><th>Max Max Status utflow Volume 0.1 478.5 Flood Risk 0.1 512.9 Flood Risk 0.1 538.7 Flood Risk 0.1 605.9 Flood Risk 0.1 629.0 Flood Risk 0.2 648.4 Flood Risk 0.2 681.0 Flood Risk 0.2 728.9 Flood Risk 0.2 855.4 Flood Risk 0.2 82.8 Flood Risk 0.2 902.6 Flood Risk 0.2 917.5 Flood Risk 0.2 928.8 Flood Risk 0.2 928.8 Flood Risk</th></ths<>	Max Max Status utflow Volume 0.1 478.5 Flood Risk 0.1 512.9 Flood Risk 0.1 538.7 Flood Risk 0.1 605.9 Flood Risk 0.1 629.0 Flood Risk 0.2 648.4 Flood Risk 0.2 681.0 Flood Risk 0.2 728.9 Flood Risk 0.2 855.4 Flood Risk 0.2 82.8 Flood Risk 0.2 902.6 Flood Risk 0.2 917.5 Flood Risk 0.2 928.8 Flood Risk 0.2 928.8 Flood Risk
Kentford CB8 7PN Designed by james howard Checked by Designed by james howard Checked by Micro Drainage Source Control 2013.1.1 Source Control 2013.1.1 Designed by james howard Checked by Micro Drainage Source Control 2013.1.1 Source Control 2013.1.1 Designed by james howard Max M	Max Max Status utflow Volume 1/s) (m³) 0.1 478.5 Flood Risk 0.1 512.9 Flood Risk 0.1 538.7 Flood Risk 0.1 538.7 Flood Risk 0.1 605.9 Flood Risk 0.1 629.0 Flood Risk 0.2 648.4 Flood Risk 0.2 681.0 Flood Risk 0.2 728.9 Flood Risk 0.2 778.7 Flood Risk 0.2 855.4 Flood Risk 0.2 82.8 Flood Risk 0.2 902.6 Flood Risk 0.2 917.5 Flood Risk 0.2 928.8 Flood Risk 0.2 928.8 Flood Risk 0.2 928.8 Flood Risk
Date 29/07/2014 14:11 File B411 catchment A bio Designed by james howard Checked by Designed cancel by james howard Micro Drainage Source Control 2013.1.1 Designed by james howard Designed cancel by james howard Summary of Results for 100 year Return Period (+30%) Summary of Results for 100 year Return Period (+30%) Storm Max Max <t< td=""><td>Max Max Status utflow Volume 1/s) (m³) 0.1 478.5 Flood Risk 0.1 512.9 Flood Risk 0.1 538.7 Flood Risk 0.1 577.1 Flood Risk 0.1 605.9 Flood Risk 0.1 629.0 Flood Risk 0.2 648.4 Flood Risk 0.2 681.0 Flood Risk 0.2 728.9 Flood Risk 0.2 814.9 Flood Risk 0.2 855.4 Flood Risk 0.2 902.6 Flood Risk 0.2 917.5 Flood Risk 0.2 928.8 Flood Risk 0.2 928.8 Flood Risk 0.2 928.8 Flood Risk</td></t<>	Max Max Status utflow Volume 1/s) (m³) 0.1 478.5 Flood Risk 0.1 512.9 Flood Risk 0.1 538.7 Flood Risk 0.1 577.1 Flood Risk 0.1 605.9 Flood Risk 0.1 629.0 Flood Risk 0.2 648.4 Flood Risk 0.2 681.0 Flood Risk 0.2 728.9 Flood Risk 0.2 814.9 Flood Risk 0.2 855.4 Flood Risk 0.2 902.6 Flood Risk 0.2 917.5 Flood Risk 0.2 928.8 Flood Risk 0.2 928.8 Flood Risk 0.2 928.8 Flood Risk
Checked by Source Control 2013.1.1 Summary of Results for 100 year Return Period (+30%) Storm Max	Max Max Status utflow Volume 1/s) (m³) 0.1 478.5 Flood Risk 0.1 512.9 Flood Risk 0.1 538.7 Flood Risk 0.1 577.1 Flood Risk 0.1 605.9 Flood Risk 0.1 629.0 Flood Risk 0.2 648.4 Flood Risk 0.2 681.0 Flood Risk 0.2 728.9 Flood Risk 0.2 814.9 Flood Risk 0.2 855.4 Flood Risk 0.2 902.6 Flood Risk 0.2 917.5 Flood Risk 0.2 928.8 Flood Risk 0.2 928.8 Flood Risk 0.2 928.8 Flood Risk
Micro Drainage Source Control 2013.1.1 Source Control 2013.1.1 Summary of Results for 100 year Return Period (+30%) Storm Max	Max Max Status utflow Volume 1/s) (m³) 0.1 478.5 Flood Risk 0.1 512.9 Flood Risk 0.1 538.7 Flood Risk 0.1 577.1 Flood Risk 0.1 605.9 Flood Risk 0.1 629.0 Flood Risk 0.2 648.4 Flood Risk 0.2 681.0 Flood Risk 0.2 728.9 Flood Risk 0.2 814.9 Flood Risk 0.2 855.4 Flood Risk 0.2 902.6 Flood Risk 0.2 917.5 Flood Risk 0.2 928.8 Flood Risk 0.2 928.8 Flood Risk 0.2 928.8 Flood Risk
Summary of Results for 100 year Return Period (+30%) Storm Max	Max Max Status utflow Volume 1/s) (m³) 0.1 478.5 Flood Risk 0.1 512.9 Flood Risk 0.1 538.7 Flood Risk 0.1 577.1 Flood Risk 0.1 605.9 Flood Risk 0.1 629.0 Flood Risk 0.2 648.4 Flood Risk 0.2 681.0 Flood Risk 0.2 728.9 Flood Risk 0.2 814.9 Flood Risk 0.2 855.4 Flood Risk 0.2 902.6 Flood Risk 0.2 917.5 Flood Risk 0.2 928.8 Flood Risk 0.2 928.8 Flood Risk 0.2 928.8 Flood Risk
Storm Feen Max Loop Max Pape Max Infil+	Max Max Status utflow Volume 1/s) (m³) 0.1 478.5 Flood Risk 0.1 512.9 Flood Risk 0.1 538.7 Flood Risk 0.1 577.1 Flood Risk 0.1 605.9 Flood Risk 0.1 629.0 Flood Risk 0.2 648.4 Flood Risk 0.2 681.0 Flood Risk 0.2 728.9 Flood Risk 0.2 814.9 Flood Risk 0.2 855.4 Flood Risk 0.2 902.6 Flood Risk 0.2 917.5 Flood Risk 0.2 928.8 Flood Risk 0.2 928.8 Flood Risk 0.2 928.8 Flood Risk
Ferrit Isono 1 orbot 1 $(1/2)$ $(1/2)$ $(1/2)$ 2 $(1/2)$ 2 $(1/2)$	utflow Volume 1/s) (m ³) 0.1 478.5 Flood Risk 0.1 512.9 Flood Risk 0.1 538.7 Flood Risk 0.1 577.1 Flood Risk 0.1 605.9 Flood Risk 0.2 648.4 Flood Risk 0.2 648.4 Flood Risk 0.2 681.0 Flood Risk 0.2 728.9 Flood Risk 0.2 778.7 Flood Risk 0.2 814.9 Flood Risk 0.2 855.4 Flood Risk 0.2 82.8 Flood Risk 0.2 902.6 Flood Risk 0.2 917.5 Flood Risk 0.2 928.8 Flood Risk 0.2 928.8 Flood Risk 0.1 928.8 Flood Risk 0.2 928.8 Flood Risk 0.1 0.2 928.8 Flood Risk 0.1 0.2 928.8 Flood Risk 0.1 0.2 928.8 Flood Risk 0.1 0.2 928.8 Flood Risk 0.2 928.8 Flood Risk
(m) (n) (1/s) (1	<pre>1/s) (m³) 0.1 478.5 Flood Risk 0.1 512.9 Flood Risk 0.1 538.7 Flood Risk 0.1 577.1 Flood Risk 0.1 605.9 Flood Risk 0.2 648.4 Flood Risk 0.2 681.0 Flood Risk 0.2 728.9 Flood Risk 0.2 778.7 Flood Risk 0.2 814.9 Flood Risk 0.2 855.4 Flood Risk 0.2 82.8 Flood Risk 0.2 902.6 Flood Risk 0.2 917.5 Flood Risk 0.2 928.8 Flood Risk Time-Peak (mins)</pre>
120 min Winter 99.700 0.300 0.0 0.1 0.0 0.1 478.5 Floo 120 min Winter 99.720 0.320 0.0 0.1 0.0 0.1 512.9 Floo 240 min Winter 99.735 0.335 0.0 0.1 0.0 0.1 512.9 Floo 360 min Winter 99.756 0.335 0.0 0.1 0.0 0.1 538.7 Floo 480 min Winter 99.772 0.372 0.0 0.1 0.0 0.1 60.9 Floo 600 min Winter 99.785 0.385 0.0 0.1 0.0 0.1 629.0 Floo 960 min Winter 99.795 0.395 0.0 0.2 0.0 0.2 648.4 Floo 960 min Winter 99.813 0.413 0.0 0.2 0.0 0.2 648.4 Floo 2160 min Winter 99.888 0.465 0.0 0.2 0.0 0.2 778.7 Floo 2880 min Winter 99.940 0.504 0.0 0.2 0.0 0.2 82.8 Floo 7200 min Winter 99.928 0.528 0.0 0.2 0.0 0.2 92.6 Floo 10080 min Winter 99.941 0.541 0	0.1 478.5 Flood Risk 0.1 512.9 Flood Risk 0.1 538.7 Flood Risk 0.1 577.1 Flood Risk 0.1 605.9 Flood Risk 0.2 648.4 Flood Risk 0.2 681.0 Flood Risk 0.2 728.9 Flood Risk 0.2 778.7 Flood Risk 0.2 814.9 Flood Risk 0.2 855.4 Flood Risk 0.2 82.8 Flood Risk 0.2 902.6 Flood Risk 0.2 917.5 Flood Risk 0.2 928.8 Flood Risk Time-Peak (mins)
180 min Winter 99.720 0.320 0.0 0.1 0.0 0.1 512.9 Floo 240 min Winter 99.735 0.335 0.0 0.1 0.0 0.1 538.7 Floo 360 min Winter 99.756 0.356 0.0 0.1 0.0 0.1 538.7 Floo 480 min Winter 99.772 0.372 0.0 0.1 0.0 0.1 577.1 Floo 600 min Winter 99.775 0.385 0.0 0.1 0.0 0.1 605.9 Floo 720 min Winter 99.795 0.395 0.0 0.2 0.0 0.2 648.4 Floo 960 min Winter 99.838 0.438 0.0 0.2 0.0 0.2 78.9 Floo 2160 min Winter 99.84 0.448 0.0 0.2 0.0 0.2 814.9 Floo 4320 min Winter 99.84 0.504 0.0 0.2 0.0 0.2 814.9 Floo 7200 min Winter 99.941 0.518 0.0 0.2 0.0 0.2<	0.1 512.9 Flood Risk 0.1 538.7 Flood Risk 0.1 577.1 Flood Risk 0.1 605.9 Flood Risk 0.1 629.0 Flood Risk 0.2 648.4 Flood Risk 0.2 681.0 Flood Risk 0.2 728.9 Flood Risk 0.2 778.7 Flood Risk 0.2 814.9 Flood Risk 0.2 855.4 Flood Risk 0.2 82.8 Flood Risk 0.2 902.6 Flood Risk 0.2 917.5 Flood Risk 0.2 928.8 Flood Risk Time-Peak (mins)
240 min Winter 99.735 0.335 0.0 0.1 0.0 0.1 538.7 Floo 360 min Winter 99.756 0.356 0.0 0.1 0.0 0.1 577.1 Floo 480 min Winter 99.772 0.372 0.0 0.1 0.0 0.1 605.9 Floo 600 min Winter 99.785 0.385 0.0 0.1 0.0 0.1 605.9 Floo 720 min Winter 99.785 0.385 0.0 0.1 0.0 0.1 629.0 Floo 720 min Winter 99.785 0.385 0.0 0.2 0.0 0.2 648.4 Floo 960 min Winter 99.813 0.413 0.0 0.2 0.0 0.2 728.9 Floo 1440 min Winter 99.888 0.438 0.0 0.2 0.0 0.2 778.7 Floo 2880 min Winter 99.884 0.484 0.0 0.2 0.0 0.2 855.4 Floo 7200 min Winter 99.918 0.518 0.0 0.2 0.0 0.2 855.4 Floo 7200 min Winter 99.926 0.526 0.0 0.2 0.0 0.2 928.8 Floo 7000 min Winter 99.941 0.541 0.0 0.2 0.0 0.2 928.8 Floo 7000 min Winter 99.941 0.541 0.0 0.2 0.0 0.2 928.8 Floo 7000 min Winter 99.941 0.541 <t< td=""><td>0.1 538.7 Flood Risk 0.1 577.1 Flood Risk 0.1 605.9 Flood Risk 0.1 629.0 Flood Risk 0.2 648.4 Flood Risk 0.2 681.0 Flood Risk 0.2 728.9 Flood Risk 0.2 778.7 Flood Risk 0.2 814.9 Flood Risk 0.2 855.4 Flood Risk 0.2 902.6 Flood Risk 0.2 917.5 Flood Risk 0.2 928.8 Flood Risk 0.2 928.8 Flood Risk 0.1 5 Flood Risk 0.2 928.8 Flood Risk</td></t<>	0.1 538.7 Flood Risk 0.1 577.1 Flood Risk 0.1 605.9 Flood Risk 0.1 629.0 Flood Risk 0.2 648.4 Flood Risk 0.2 681.0 Flood Risk 0.2 728.9 Flood Risk 0.2 778.7 Flood Risk 0.2 814.9 Flood Risk 0.2 855.4 Flood Risk 0.2 902.6 Flood Risk 0.2 917.5 Flood Risk 0.2 928.8 Flood Risk 0.2 928.8 Flood Risk 0.1 5 Flood Risk 0.2 928.8 Flood Risk
360 min Winter 99.756 0.356 0.0 0.1 0.0 0.1 577.1 Floor 480 min Winter 99.772 0.372 0.0 0.1 0.0 0.1 60.9 Floor 600 min Winter 99.785 0.385 0.0 0.1 0.0 0.1 60.9 Floor 720 min Winter 99.795 0.395 0.0 0.2 0.0 0.2 648.4 Floor 960 min Winter 99.813 0.413 0.0 0.2 0.0 0.2 681.0 Floor 1440 min Winter 99.838 0.438 0.0 0.2 0.0 0.2 728.9 Floor 2160 min Winter 99.884 0.484 0.0 0.2 0.0 0.2 78.7 Floor 4320 min Winter 99.884 0.484 0.0 0.2 0.0 0.2 814.9 Floor 5760 min Winter 99.940 0.504 0.0 0.2 0.0 0.2 882.8 Floor 10080 min Winter 99.928 0.528 0.0 0.2 0.0 0.2 917.5 Floor 10080 min Winter 99.941 0.541 0.0 0.2 0.0 0.2 </td <td>0.1 577.1 Flood Risk 0.1 605.9 Flood Risk 0.1 629.0 Flood Risk 0.2 648.4 Flood Risk 0.2 681.0 Flood Risk 0.2 728.9 Flood Risk 0.2 778.7 Flood Risk 0.2 814.9 Flood Risk 0.2 855.4 Flood Risk 0.2 902.6 Flood Risk 0.2 917.5 Flood Risk 0.2 928.8 Flood Risk Time-Peak (mins)</td>	0.1 577.1 Flood Risk 0.1 605.9 Flood Risk 0.1 629.0 Flood Risk 0.2 648.4 Flood Risk 0.2 681.0 Flood Risk 0.2 728.9 Flood Risk 0.2 778.7 Flood Risk 0.2 814.9 Flood Risk 0.2 855.4 Flood Risk 0.2 902.6 Flood Risk 0.2 917.5 Flood Risk 0.2 928.8 Flood Risk Time-Peak (mins)
480 min Winter 99.772 0.372 0.0 0.1 0.0 0.1 605.9 Floor 600 min Winter 99.785 0.385 0.0 0.1 0.0 0.1 629.0 Floor 720 min Winter 99.795 0.395 0.0 0.2 0.0 0.2 648.4 Floor 960 min Winter 99.813 0.413 0.0 0.2 0.0 0.2 681.0 Floor 1440 min Winter 99.838 0.438 0.0 0.2 0.0 0.2 728.9 Floor 2160 min Winter 99.846 0.465 0.0 0.2 0.0 0.2 778.7 Floor 2880 min Winter 99.940 0.504 0.0 0.2 0.0 0.2 814.9 Floor 4320 min Winter 99.918 0.518 0.0 0.2 0.0 0.2 855.4 Floor 7200 min Winter 99.928 0.528 0.0 0.2 0.0 0.2 928.8 Floor 10080 min Winter 99.941 0.541 0.0 0.2 0.0 0.2 928.8 Floor 10080 min Winter 99.941 0.541 0.0 22.7 0.0 136 180 min Winter 26.498	0.1 605.9 Flood Risk 0.1 629.0 Flood Risk 0.2 648.4 Flood Risk 0.2 681.0 Flood Risk 0.2 728.9 Flood Risk 0.2 778.7 Flood Risk 0.2 814.9 Flood Risk 0.2 855.4 Flood Risk 0.2 902.6 Flood Risk 0.2 917.5 Flood Risk 0.2 928.8 Flood Risk Time-Peak (mins)
600 min Winter 99.785 0.385 0.0 0.1 0.0 0.1 629.0 Floor 720 min Winter 99.795 0.395 0.0 0.2 0.0 0.2 648.4 Floor 960 min Winter 99.813 0.413 0.0 0.2 0.0 0.2 681.0 Floor 1440 min Winter 99.838 0.438 0.0 0.2 0.0 0.2 728.9 Floor 2160 min Winter 99.865 0.465 0.0 0.2 0.0 0.2 78.7 Floor 2160 min Winter 99.884 0.448 0.0 0.2 0.0 0.2 814.9 Floor 4320 min Winter 99.940 0.504 0.0 0.2 0.0 0.2 814.9 Floor 7200 min Winter 99.918 0.518 0.0 0.2 0.0 0.2 852.4 Floor 7200 min Winter 99.926 0.528 0.0 0.2 0.0 0.2 917.5 Floor 10080 min Winter 99.936 0.536 0.0 22.7 0.0 136 180 min W	0.1 629.0 Flood Risk 0.2 648.4 Flood Risk 0.2 681.0 Flood Risk 0.2 728.9 Flood Risk 0.2 778.7 Flood Risk 0.2 814.9 Flood Risk 0.2 855.4 Flood Risk 0.2 902.6 Flood Risk 0.2 917.5 Flood Risk 0.2 928.8 Flood Risk Time-Peak (mins)
720 min Winter 99.795 0.395 0.0 0.2 0.0 0.2 648.4 Floor 960 min Winter 99.813 0.413 0.0 0.2 0.0 0.2 681.0 Floor 1440 min Winter 99.838 0.438 0.0 0.2 0.0 0.2 728.9 Floor 2160 min Winter 99.865 0.465 0.0 0.2 0.0 0.2 778.7 Floor 2880 min Winter 99.944 0.504 0.0 0.2 0.0 0.2 814.9 Floor 4320 min Winter 99.918 0.518 0.0 0.2 0.0 0.2 882.8 Floor 7200 min Winter 99.928 0.528 0.0 0.2 0.0 0.2 92.6 Floor 7200 min Winter 99.941 0.541 0.0 0.2 0.0 0.2 92.6 Floor 10080 min Winter 99.941 0.541 0.0 0.2 0.0 0.2 92.8 Floor 10080 min Winter 99.941 0.541 0.0 0.2 0.0 0.2 92.8 Floor 120 min Winter 10.541 0.0 0.2 0.0 22.7 0.0 1	0.2 648.4 Flood Risk 0.2 681.0 Flood Risk 0.2 728.9 Flood Risk 0.2 778.7 Flood Risk 0.2 814.9 Flood Risk 0.2 855.4 Flood Risk 0.2 882.8 Flood Risk 0.2 902.6 Flood Risk 0.2 928.8 Flood Risk 0.2 928.8 Flood Risk Time-Peak (mins)
960 min Winter 99.813 0.413 0.0 0.2 0.0 0.2 681.0 Floo 1440 min Winter 99.838 0.438 0.0 0.2 0.0 0.2 728.9 Floo 2160 min Winter 99.865 0.465 0.0 0.2 0.0 0.2 778.7 Floo 2880 min Winter 99.884 0.484 0.0 0.2 0.0 0.2 814.9 Floo 4320 min Winter 99.904 0.504 0.0 0.2 0.0 0.2 85.4 Floo 5760 min Winter 99.928 0.528 0.0 0.2 0.0 0.2 92.6 Floo 7200 min Winter 99.936 0.536 0.0 0.2 0.0 0.2 92.6 Floo 10080 min Winter 99.941 0.541 0.0 0.2 0.0 0.2 92.8.8 Floo 10080 min Winter 37.054 0.0 22.7 0.0 136 180 min Winter 26.498<	0.2 681.0 Flood Risk 0.2 728.9 Flood Risk 0.2 778.7 Flood Risk 0.2 814.9 Flood Risk 0.2 855.4 Flood Risk 0.2 882.8 Flood Risk 0.2 902.6 Flood Risk 0.2 917.5 Flood Risk 0.2 928.8 Flood Risk Time-Peak (mins)
1440 min Winter 99.838 0.438 0.0 0.2 0.0 0.2 728.9 Flood 2160 min Winter 99.865 0.465 0.0 0.2 0.0 0.2 728.9 Flood 2800 min Winter 99.865 0.465 0.0 0.2 0.0 0.2 778.7 Flood 4320 min Winter 99.944 0.504 0.0 0.2 0.0 0.2 814.9 Flood 4320 min Winter 99.940 0.504 0.0 0.2 0.0 0.2 82.8 Flood 7200 min Winter 99.928 0.528 0.0 0.2 0.0 0.2 92.6 Flood 10080 min Winter 99.941 0.541 0.0 0.2 0.0 0.2 92.8 Flood 10080 min Winter 99.941 0.541 0.0 0.2 0.0 0.2 928.8 Flood 10080 min Winter 37.054 0.0<	0.2 728.9 Flood Risk 0.2 778.7 Flood Risk 0.2 814.9 Flood Risk 0.2 855.4 Flood Risk 0.2 82.8 Flood Risk 0.2 902.6 Flood Risk 0.2 928.8 Flood Risk 0.2 928.8 Flood Risk Time-Peak (mins)
2160 min Winter 99.865 0.465 0.0 0.2 0.0 0.2 778.7 Floo 2880 min Winter 99.884 0.484 0.0 0.2 0.0 0.2 814.9 Floo 4320 min Winter 99.904 0.504 0.0 0.2 0.0 0.2 814.9 Floo 5760 min Winter 99.918 0.518 0.0 0.2 0.0 0.2 855.4 Floo 7200 min Winter 99.928 0.528 0.0 0.2 0.0 0.2 902.6 Floo 8640 min Winter 99.936 0.536 0.0 0.2 0.0 0.2 917.5 Floo 10080 min Winter 99.941 0.541 0.0 0.2 0.0 0.2 928.8 Floo 10080 min Winter 99.941 0.541 0.0 0.2 0.0 0.2 928.8 Floo 10080 min Winter 99.941 0.541 0.0 0.2 0.0 0.2 928.8 Floo 10080 min Winter 99.941 0.541 0.0 0.2 0.0 0.2 928.8 Floo 10080 min Winter 99.941 0.541 0.0 0.2 0.0 10.2 928.8 Floo 10080 min Winter 99.943 0.0 22.7 0.0 136 120 min Winter 20.887 0.0 23.	0.2 778.7 Flood Risk 0.2 814.9 Flood Risk 0.2 855.4 Flood Risk 0.2 82.8 Flood Risk 0.2 902.6 Flood Risk 0.2 917.5 Flood Risk 0.2 928.8 Flood Risk Time-Peak (mins)
2880 min Winter 99.884 0.484 0.0 0.2 0.0 0.2 814.9 Flood 4320 min Winter 99.904 0.504 0.0 0.2 0.0 0.2 855.4 Flood 5760 min Winter 99.918 0.518 0.0 0.2 0.0 0.2 882.8 Flood 7200 min Winter 99.928 0.528 0.0 0.2 0.0 0.2 902.6 Flood 8640 min Winter 99.936 0.536 0.0 0.2 0.0 0.2 92.6 Flood 10080 min Winter 99.941 0.541 0.0 0.2 0.0 0.2 92.8 Flood 10080 min Winter 99.941 0.541 0.0 0.2 0.0 0.2 92.8 Flood 10080 min Winter 99.941 0.541 0.0 0.2 0.0 0.2 928.8 Flood 10080 min Winter 99.941 0.541 0.0 0.2 0.0 0.2 928.8 Flood 10080 min Winter 10.0 0.0 22.7 0.0 136 120 min Winter 37.054 0.0 23.2 0.0 194 240 min Winter 20.887 0.0 23.	0.2 814.9 Flood Risk 0.2 855.4 Flood Risk 0.2 82.8 Flood Risk 0.2 902.6 Flood Risk 0.2 917.5 Flood Risk 0.2 928.8 Flood Risk w Time-Peak (mins)
4320 min Winter 99.904 0.504 0.0 0.2 0.0 0.2 855.4 Floor 5760 min Winter 99.918 0.518 0.0 0.2 0.0 0.2 882.8 Floor 7200 min Winter 99.928 0.528 0.0 0.2 0.0 0.2 902.6 Floor 8640 min Winter 99.936 0.536 0.0 0.2 0.0 0.2 902.6 Floor 10080 min Winter 99.941 0.541 0.0 0.2 0.0 0.2 928.8 Floor 10080 min Winter 99.941 0.541 0.0 0.2 0.0 0.2 928.8 Floor 10080 min Winter 99.941 0.541 0.0 0.2 0.0 0.2 928.8 Floor 10080 min Winter 99.941 0.541 0.0 0.2 0.0 0.2 928.8 Floor 10080 min Winter 99.941 0.0 0.2 0.0 0.2 928.8 Floor 120 min Winter 10.00 22.7 0.0 136 136 180 min Winter 20.887 0.0 23.2 0.0 194 240 min Winter 14.937 0.0 23.9 0.0 374	0.2 855.4 Flood Risk 0.2 882.8 Flood Risk 0.2 902.6 Flood Risk 0.2 917.5 Flood Risk 0.2 928.8 Flood Risk W Time-Peak (mins)
5760 min Winter 99.918 0.518 0.0 0.2 0.0 0.2 882.8 Flood 7200 min Winter 99.928 0.528 0.0 0.2 0.0 0.2 902.6 Flood 8640 min Winter 99.936 0.536 0.0 0.2 0.0 0.2 902.6 Flood 10080 min Winter 99.941 0.541 0.0 0.2 0.0 0.2 928.8 Flood 10080 min Winter 99.941 0.541 0.0 0.2 0.0 0.2 928.8 Flood 10080 min Winter 99.941 0.541 0.0 0.2 0.0 0.2 928.8 Flood 10080 min Winter 99.941 0.541 0.0 0.2 0.0 0.2 928.8 Flood 10080 min Winter 99.941 0.541 0.0 0.0 0.2 0.0 0.2 928.8 Flood 120 min Winter 10.00 (m³) (m³) (m³) (mins) (mins) 120 min Winter 26.498 0.0 23.2 0.0 194 240 min Winter 14.937 0.0 23.5 0.0 254 360 min Winter 14.937 0.0 24.2 0.0 492	0.2 882.8 Flood Risk 0.2 902.6 Flood Risk 0.2 917.5 Flood Risk 0.2 928.8 Flood Risk w Time-Peak (mins)
7200 min Winter 99.928 0.528 0.0 0.2 0.0 0.2 902.6 Flow 8640 min Winter 99.936 0.536 0.0 0.2 0.0 0.2 917.5 Flow 10080 min Winter 99.941 0.541 0.0 0.2 0.0 0.2 928.8 Flow Storm Rain Flooded Discharge Overflow Time-Peak Volume Volume (mins) (m³) (m³) (m³) 120 min Winter 37.054 0.0 22.7 0.0 136 180 min Winter 26.498 0.0 23.2 0.0 194 240 min Winter 14.937 0.0 23.9 0.0 374 480 min Winter 11.774 0.0 24.2 0.0 492 600 min Winter 9.790 0.0 24.3 0.0 612	0.2 902.6 Flood Risk 0.2 917.5 Flood Risk 0.2 928.8 Flood Risk W Time-Peak (mins)
8640 min Winter 99.936 0.536 0.0 0.2 0.0 0.2 917.5 Flood 10080 min Winter 99.941 0.541 Storm Rain Flooded Discharge Overflow Time-Peak Event (mm/hr) Volume Volume Volume (mins) 120 min Winter 37.054 0.0 22.7 0.0 136 180 min Winter 26.498 0.0 23.2 0.0 194 240 min Winter 14.937 0.0 23.5 0.0 254 360 min Winter 11.774 0.0 24.2 0.0 492 600 min Winter 9.790 0.0 24.3 0.0 612	0.2 917.5 Flood Risk 0.2 928.8 Flood Risk w Time-Peak (mins)
10080 min Winter 99.941 0.541 0.0 0.2 0.0 0.2 928.8 Floor Storm Rain Flooded Discharge Overflow Time-Peak Event (mm/hr) Volume Volume Volume (m³) (m³) 120 min Winter 37.054 0.0 22.7 0.0 136 180 min Winter 26.498 0.0 23.2 0.0 194 240 min Winter 14.937 0.0 23.5 0.0 374 360 min Winter 11.774 0.0 24.2 0.0 492 600 min Winter 9.790 0.0 24.3 0.0 612	0.2 928.8 Flood Risk w Time-Peak (mins)
Storm EventRain (mm/hr)Flooded Volume (m³)Discharge Volume (N°3)Overflow Volume (N°3)Time-Peak (mins)120 min Winter37.0540.022.70.0136120 min Winter26.4980.023.20.0194240 min Winter20.8870.023.50.0254360 min Winter14.9370.023.90.0374480 min Winter9.7900.024.30.0612	w Time-Peak (mins)
Event(mm/hr)Volume (m³)Volume (m³)Volume (m³)(mins) (m³)120 min Winter37.0540.022.70.0136180 min Winter26.4980.023.20.0194240 min Winter20.8870.023.50.0254360 min Winter14.9370.023.90.0374480 min Winter11.7740.024.20.0492600 min Winter9.7900.024.30.0612	(mins)
(m³)(m³)(m³)(m³)120 min Winter37.0540.022.70.0136180 min Winter26.4980.023.20.0194240 min Winter20.8870.023.50.0254360 min Winter14.9370.023.90.0374480 min Winter11.7740.024.20.0492600 min Winter9.7900.024.30.0612	
120 min Winter37.0540.022.70.0136180 min Winter26.4980.023.20.0194240 min Winter20.8870.023.50.0254360 min Winter14.9370.023.90.0374480 min Winter11.7740.024.20.0492600 min Winter9.7900.024.30.0612	100
180 min Winter26.4980.023.20.0194240 min Winter20.8870.023.50.0254360 min Winter14.9370.023.90.0374480 min Winter11.7740.024.20.0492600 min Winter9.7900.024.30.0612	100
240 min Winter20.8870.023.50.0254360 min Winter14.9370.023.90.0374480 min Winter11.7740.024.20.0492600 min Winter9.7900.024.30.0612	J 136
360 min Winter14.9370.023.90.0374480 min Winter11.7740.024.20.0492600 min Winter9.7900.024.30.0612	0 194
480 min Winter11.7740.024.20.0492600 min Winter9.7900.024.30.0612	0 254
600 min Winter 9.790 0.0 24.3 0.0 612	0 374
	0 492
720 min Winter 8 420 0 0 24 3 0 0 730	
960 min Winter 6.647 0.0 24.3 0.0 970	070
2160 min Winter 3.413 0.0 50.6 0.0 2164	0 1446
	0 1446 0 2164
	D 1446 D 2164 D 2868
	D 1446 D 2164 D 2868 D 4288
	D 1446 D 2164 D 2868 D 4288 D 5712
	D 1446 D 2164 D 2868 D 4288 D 5712 D 7136
10080 min Winter 0.927 0.0 93.8 0.0 9984	D 1446 D 2164 D 2868 D 4288 D 5712 D 7136 D 8560
	D 1446 D 2164 D 2868 D 4288 D 5712 D 7136 D 8560
10000 mill winter 0.927 0.0 93.8 0.0 9984	D 1446 D 2164 D 2868 D 4288 D 5712 D 7136 D 8560

ambridge House anwades Business Park entford CB8 7PN atc 29/07/2014 14:11 ile B411 catchment A bio icro Drainage Source Control 2013.1.1 Rainfall Details Rainfall Model FEH Return Period (years) 100 Site Location GB 550950 257200 TL 50950 57200 C (1km) 0.28 D2 (1km) 0.288 D2 (1km) 0.263 D3 (1km) 0.263 E (1km) 0.312 F (1km) 2.488 Summer Storms Yes Cv (Summer) 0.750 Cv (Summer) 0.750 Cv (Summer) 0.400 Shortest Storm (mins) 15 Longest Storm (mins) 10080 Climate Change % +30 Time (mins) Area From: To: Time (mins) Area From: To: (ha) 0 4 8 0.200 8 12 0.200 12 16 0.170 </th <th>annon consulti</th> <th>ing Enginee:</th> <th>rs</th> <th></th> <th></th> <th></th> <th></th> <th>Page</th> <th>e 3</th> <th></th> <th></th> <th></th>	annon consulti	ing Enginee:	rs					Page	e 3			
entford CB8 7FN ate 29/07/2014 14:11 ile B411 catchment A bio Bainfall catchment A bio Source Control 2013.1.1 Rainfall Model FEH Return Period (years) 100 Site Location GB 550950 257200 TL 50950 57200 C (1km) -0.025 D1 (1km) 0.288 D2 (1km) 0.283 D3 (1km) 0.263 E (1km) 0.312 F (1km) 2.488 Summer Storms Yes Winter Storms Yes Cv (Summer) 0.840 Shortest Storm (mins) 15 Longest Storm (mins) 15 Longest Storm (mins) 15 Cimate Change % +30 Time Area Diagram Total Area (ha) 0.770 Time (mins) Area From: To: (ha)	ambridge House	3										
ate 29/07/2014 14:11 Designed by james howard iter B411 catchment A bio Decinage iter Drainage Source Control 2013.1.1 Rainfall Model FEH Rainfall Model Return Period (years) 0 C (1km) 0.25 D1 (1km) 0.288 D2 (1km) 0.288 D2 (1km) 0.263 E (1km) 0.750 Cv (Summer) 0.840 Shortest Storm (mins) 10080 <td< td=""><td>anwades Busine</td><th>ess Park</th><td></td><td></td><td></td><td></td><td></td><td>5</td><td></td><td></td><td></td><td></td></td<>	anwades Busine	ess Park						5				
ile B411 catchment A bio checked by icro Drainage Source Control 2013.1.1 Rainfall Details Rainfall Model FEH Return Period (years) 100 Site Location GB 550950 257200 TL 50950 57200 C (1km) -0.025 D1 (1km) 0.288 D2 (1km) 0.288 D2 (1km) 0.283 D3 (1km) 0.312 F (1km) 2.488 Summer Storms Yes Winter Storms Yes Winter Storms Yes V (Summer) 0.750 CV (Winter) 0.840 Shortest Storm (mins) 15 Longest Storm (mins) 15 Longest Storm (mins) 15 Longest Storm (mins) 10080 Climate Change % +30 Time Area Diagram Total Area (ha) 0.770 Time (mins) Area Time (mins) Area Time (mins) Area From: To: (ha) Time (mins) Area Time (mins) Area From: To: (ha)	entford CB8 7	7PN								SLC		\mathcal{I}
ile B411 catchment A bio checked by icro Drainage Source Control 2013.1.1 Rainfall Details Rainfall Model FEH Return Period (years) 100 Site Location GB 550950 257200 TL 50950 57200 C (1km) -0.025 D1 (1km) 0.288 D2 (1km) 0.288 D2 (1km) 0.283 D3 (1km) 0.312 F (1km) 2.488 Summer Storms Yes Winter Storms Yes Winter Storms Yes V (Summer) 0.750 CV (Winter) 0.840 Shortest Storm (mins) 15 Longest Storm (mins) 15 Longest Storm (mins) 15 Longest Storm (mins) 10080 Climate Change % +30 Time Area Diagram Total Area (ha) 0.770 Time (mins) Area Time (mins) Area Time (mins) Area From: To: (ha) Time (mins) Area Time (mins) Area From: To: (ha)	ate 29/07/2014	1 14:11	D	esigned	bv jar	nes how	ard					
icro Drainage Source Control 2013.1.1 Rainfall Details Rainfall Model FEH Return Period (years) 100 Site Location GB 550950 257200 TL 50950 57200 -0.025 D1 (lkm) -0.025 D1 (lkm) 0.288 D2 (1km) 0.263 E (1km) 0.312 F (1km) 2.488 Summer Storms Yes Winter Storms Yes Winter Storms Yes Cv (Summer) 0.750 Cv (Winter) 0.840 Shortest Storm (mins) 10080 Climate Change % +30 Time Area Diagram Total Area (ha) 0.770 Time (mins) Area Time (mins) Area Time (mins) Area From: To: Time (mins) Area Time (mins) Area									250		(کرک	G
Rainfall Details Rainfall Model FEH Return Period (years) 100 Site Location GB 550950 257200 TL 50950 57200 0.025 C (1km) -0.025 D1 (1km) 0.288 D2 (1km) 0.293 D3 (1km) 0.263 E (1km) 0.312 F (1km) 2.488 Summer Storms Yes Winter Storms Yes Cv (Summer) 0.750 Cv (Winter) 0.840 Shortest Storm (mins) 10080 Climate Change % +30 Time Area Diagram Total Area (ha) 0.770 Time (mins) Area Time (mins) Area Time (mins) Area From: To: Time (mins) Area Time (mins) Area Time (mins) Area					-	2013 1	1					
Rainfall Model FEH Return Period (years) 100 Site Location GB 550950 257200 TL 50950 57200 -0.025 C (1km) -0.025 D1 (1km) 0.288 D2 (1km) 0.293 D3 (1km) 0.263 E (1km) 0.312 F (1km) 2.488 Summer Storms Yes Cv (Summer) 0.750 Cv (Winter) 0.840 Shortest Storm (mins) 15 Longest Storm (mins) 150080 Climate Change % +30 Time Area Diagram Time (mins) Area Time (mins) Area Time (mins) Area From: To: Total Area (ha) 0.770	,-		-				-					
Return Period (years) 100 Site Location GB 550950 257200 TL 50950 57200 0.025 C (1km) -0.025 D1 (1km) 0.288 D2 (1km) 0.293 D3 (1km) 0.263 E (1km) 0.312 F (1km) 2.488 Summer Storms Yes Winter Storms Yes Winter Storms Yes Cv (Summer) 0.750 Cv (Winter) 0.840 Shortest Storm (mins) 15 Longest Storm (mins) 10080 Climate Change % +30 Time Area Diagram Total Area (ha) 0.770 Time (mins) Area Time (mins) Area Time (mins) Area From: To: (ha) From: To: (ha)				Ra	ainfall	Detai	<u>ls</u>					
Site Location GB 550950 257200 TL 50950 57200 C (1km) -0.025 D1 (1km) 0.288 D2 (1km) 0.293 D3 (1km) 0.263 E (1km) 0.312 F (1km) 2.488 Summer Storms Yes Winter Storms Yes Winter Storms Yes Cv (Summer) 0.750 Cv (Winter) 0.840 Shortest Storm (mins) 15 Longest Storm (mins) 10080 Climate Change % +30 Time Area Diagram Total Area (ha) 0.770 Time (mins) Area Time (mins) Area Time (mins) Area From: To: To: (ha) From: To: (ha)			Rainfa	ill Mode	1				FE	Н		
C (1km) -0.025 D1 (1km) 0.288 D2 (1km) 0.293 D3 (1km) 0.263 E (1km) 0.312 F (1km) 2.488 Summer Storms Yes Winter Storms Yes Cv (Summer) 0.750 Cv (Winter) 0.840 Shortest Storm (mins) 15 Longest Storm (mins) 10080 Climate Change % +30 Time Area Diagram Total Area (ha) 0.770 Time (mins) Area Time (mins) Area Time (mins) Area From: To: (ha) From: To: (ha)		Return	Period	l (years)				10	0		
D1 (1km) 0.288 D2 (1km) 0.293 D3 (1km) 0.263 E (1km) 0.312 F (1km) 2.488 Summer Storms Yes Winter Storms Yes Winter Storms Yes Cv (Summer) 0.750 Cv (Winter) 0.840 Shortest Storm (mins) 15 Longest Storm (mins) 10080 Climate Change % +30 Time Area Diagram Total Area (ha) 0.770 Time (mins) Area Time (mins) Area Time (mins) Area From: To: (ha) From: To:			Site	Locatio	n GB 5	50950 2	257200 1	L 5095	0 5720	0		
D2 (1km) 0.293 D3 (1km) 0.263 E (1km) 0.312 F (1km) 2.488 Summer Storms Yes Winter Storms Yes Cv (Summer) 0.750 Cv (Winter) 0.840 Shortest Storm (mins) 15 Longest Storm (mins) 10080 Climate Change % +30 Time Area Diagram Time (mins) Area Time (mins) Area From: To: Time (mins) Area From: To: To: Market To:				C (1km)				-0.02	5		
D3 (1km) 0.263 E (1km) 0.312 F (1km) 2.488 Summer Storms Yes Winter Storms Yes Cv (Summer) 0.750 Cv (Winter) 0.840 Shortest Storm (mins) 15 Longest Storm (mins) 10080 Climate Change % +30 Time Area Diagram Total Area (ha) 0.770 Time (mins) Area Time (mins) Area From: To: To: Mines To: Time (mins) Area From: To: To: Mines To: Time (mins) Area Time (mins) Area Time (mins) Area From: To: To: Subscription To: Subscription To: Winter To: Subscription To:												
E (1km) 0.312 F (1km) 2.488 Summer Storms Yes Winter Storms Yes Cv (Summer) 0.750 Cv (Winter) 0.840 Shortest Storm (mins) 15 Longest Storm (mins) 10080 Climate Change % +30 Time Area Diagram Total Area (ha) 0.770 Time (mins) Area Time (mins) Area Time (mins) Area From: To: Tot: (ha) From: To: (ha)												
F (1km) 2.488 Summer Storms Yes Winter Storms Yes Cv (Summer) 0.750 Cv (Winter) 0.840 Shortest Storm (mins) 15 Longest Storm (mins) 10080 Climate Change % +30 Time Area Diagram Total Area (ha) 0.770 Time (mins) Area Time (mins) Area From: To: To: Longer: To: To: Color Time (mins) Area From: To: To: Total Area Time (mins) Area From: To: Time (mins) Area From: To: (ha)												
Summer Storms Yes Winter Storms Yes Cv (Summer) 0.750 Cv (Winter) 0.840 Shortest Storm (mins) 15 Longest Storm (mins) 10080 Climate Change % +30 Time Area Diagram Total Area (ha) 0.770 Time (mins) Area Time (mins) Area Time (mins) Area From: To: To: (ha) From: To: (ha)												
Winter Storms Yes Cv (Summer) 0.750 Cv (Winter) 0.840 Shortest Storm (mins) 15 Longest Storm (mins) 10080 Climate Change % +30 Time Area Diagram Total Area (ha) 0.770 Time (mins) Area Time (mins) Area Time (mins) Area From: To: To: (ha) From: To: (ha)			Summo									
Cv (Summer) 0.750 Cv (Winter) 0.840 Shortest Storm (mins) 15 Longest Storm (mins) 10080 Climate Change % +30 Time Area Diagram Total Area (ha) 0.770 Time (mins) Area Time (mins) Area Time (mins) Area From: To: To: (ha) From: To: (ha)												
Cv (Winter) 0.840 Shortest Storm (mins) 15 Longest Storm (mins) 10080 Climate Change % +30 Time Area Diagram Total Area (ha) 0.770 Time (mins) Area Time (mins) Area Time (mins) Area From: To: (ha) From: To: (ha)												
Longest Storm (mins) 10080 Climate Change % +30 <u>Time Area Diagram</u> Total Area (ha) 0.770 <u>Time (mins) Area</u> <u>Time (mins) Area</u> <u>From: To: (ha)</u> <u>From: To: (ha)</u> <u>From: To: (ha)</u>												
Climate Change % +30 <u>Time Area Diagram</u> Total Area (ha) 0.770 <u>Time (mins) Area</u> <u>Time (mins) Area</u> <u>Time (mins) Area</u> <u>From: To: (ha)</u> <u>From: To: (ha)</u> <u>From: To: (ha)</u>		Shortes	st Stor	m (mins)				1	5		
<u>Time Area Diagram</u> Total Area (ha) 0.770 Time (mins) Area Time (mins) Area Time (mins) Area From: To: (ha) From: To: (ha) From: To: (ha) From: To: (ha)		Longes	st Stor	m (mins)				1008	0		
Total Area (ha) 0.770 Time (mins) Area Time (mins) Area Time (mins) Area Time (mins) Area From: To: (ha) From: To: (ha) From: To: (ha)		Cl	Limate	Change	90				+3	0		
Total Area (ha) 0.770 Time (mins) Area Time (mins) Area Time (mins) Area Time (mins) Area From: To: (ha) From: To: (ha) From: To: (ha)												
Time (mins) Area Time (mins) Area Time (mins) Area Time (mins) Area From: To: (ha) From: To: (ha) From: To: (ha) From: To: (ha)				<u>Ti</u> :	me Are	a Diagi	ram					
From: To: (ha) From: To: (ha) From: To: (ha) From: To: (ha)				Tota	l Area	(ha) (.770					
From: To: (ha) From: To: (ha) From: To: (ha) From: To: (ha)												
	Time (m	uins) Area	Time	(mins)	Area	Time	(mins)	Area	Time	(mins)	Area	
0 4 0.200 4 8 0.200 8 12 0.200 12 16 0.170	-	-										
	-	-										
	From:	To: (ha)	From:	To:	(ha)	From:	То:	(ha)	From:	То:	(ha)	
	From:	To: (ha)	From:	To:	(ha)	From:	То:	(ha)	From:	То:	(ha)	
	From:	To: (ha)	From:	To:	(ha)	From:	То:	(ha)	From:	То:	(ha)	
	From:	To: (ha)	From:	To:	(ha)	From:	То:	(ha)	From:	То:	(ha)	
	From:	To: (ha)	From:	To:	(ha)	From:	То:	(ha)	From:	То:	(ha)	
	From:	To: (ha)	From:	To:	(ha)	From:	То:	(ha)	From:	То:	(ha)	
	From:	To: (ha)	From:	To:	(ha)	From:	То:	(ha)	From:	То:	(ha)	
	From:	To: (ha)	From:	To:	(ha)	From:	То:	(ha)	From:	То:	(ha)	
	From:	To: (ha)	From:	To:	(ha)	From:	То:	(ha)	From:	То:	(ha)	
	From:	To: (ha)	From:	To:	(ha)	From:	То:	(ha)	From:	То:	(ha)	
	From:	To: (ha)	From:	To:	(ha)	From:	То:	(ha)	From:	То:	(ha)	
	From:	To: (ha)	From:	To:	(ha)	From:	То:	(ha)	From:	То:	(ha)	
	From:	To: (ha)	From:	To:	(ha)	From:	То:	(ha)	From:	То:	(ha)	
	From:	To: (ha)	From:	To:	(ha)	From:	То:	(ha)	From:	То:	(ha)	
	From:	To: (ha)	From:	To:	(ha)	From:	То:	(ha)	From:	То:	(ha)	
	From:	To: (ha)	From:	To:	(ha)	From:	То:	(ha)	From:	То:	(ha)	

Cannon Consulting Engineers		Page 4
Cambridge House		
Lanwades Business Park		
Kentford CB8 7PN		
Date 29/07/2014 14:11	Designed by james howard	Prennecce
File B411 catchment A bio Micro Drainage	Checked by Source Control 2013.1.1	
Micro Dramage		
	Model Details	
Stora	ge is Online Cover Level (m) 1	00.000
	Complex Structure	
	<u>Bio-Retention Area</u>	
Inv	ert Level (m) 99.400 Porosity	1.00
Dept	h (m) Area (m²) Depth (m) Area	(m²)
	0.000 1448.0 0.600 2	062.0
	Filtration Outflow Control	
	TITELACTON OUCLION CONCLOT	
Permeability Coe	fficient (m/s) 0.000010 Safety Factor 10.000 Invert Bed Depth (m) 0.450	
	<u>Weir Overflow Control</u>	
Discharge Graf		
Discharge Coer	0.544 Width (m) 5.000 Invert L	evel (m) 100.000
	©1982-2013 Micro Drainage Ltd	

ambridge Hous	ting Engin		3411			Page	±	
ambridge Hous anwades Busir				iorotorti	on 100		70 -	
entford CB8		1	лгеа в в	Toterenti	on 100 yr.		$\left(\begin{array}{c} \\ \\ \\ \end{array} \right) \left(\begin{array}{c} \\ \\ \\ \end{array} \right)$	RO V
					. l			
ate 29/07/201				by james	noward			۲) و) چ و ا
'ile B411 cato			Checked	-	10 1 1			
Aicro Drainage	3	2	Source C	ontrol 20)13.1.1			
	Summ	ary of R	esults i	<u>Eor 100 y</u>	<u>ear Return</u>	Period (+30%)	
		H	alf Drai	n Time ex	kceeds 7 da	ays.		
	C	utflow i	s too lo	ow. Desi	gn is unsa	tisfactor	у.	
	Storm	Max	Max Domth (Max	Max	Max	Max	Status
	Event	(m)	(m)	(1/s)	verflow Σ (1/s)	(1/s)	(m ³)	
15	min Summer	r 99 633	0 233	0.1	0.0	0.1	186.1	0 K
	min Summer			0.1	0.0	0.1	209.7	0 K
	min Summer			0.1	0.0	0.1	236.3	0 K
	min Summer			0.1	0.0	0.1		Flood Risk
	min Summer			0.1	0.0	0.1		Flood Risk
	min Summer			0.1	0.0	0.1	299.7	Flood Risk
360	min Summer	r 99.754	0.354	0.1	0.0	0.1	321.0	Flood Risk
480	min Summer	r 99.767	0.367	0.1	0.0	0.1	337.0	Flood Risk
600	min Summer	r 99.777	0.377	0.1	0.0	0.1	349.8	Flood Risk
	min Summer			0.1	0.0	0.1	360.5	Flood Risk
	min Summer			0.1	0.0	0.1	378.5	Flood Risk
	min Summer			0.1	0.0	0.1		Flood Risk
	min Summer			0.1	0.0	0.1		Flood Risk
	min Summer			0.1	0.0			Flood Risk
	min Summer			0.1	0.0			Flood Risk
	min Summer			0.1	0.0			Flood Risk
	min Summer			0.1	0.0			Flood Risk
	min Summer min Summer			0.1	0.0	0.1		Flood Risk Flood Risk
	min Summer min Winter			0.1	0.0		208.4	O K
	min Winter			0.1	0.0	0.1	208.4	0 K
	min Winter			0.1	0.0	0.1		Flood Risk
00	Sto:		Rain		Discharge			
	55.0			Volume	Volume	Volume	(min	
	Sto: Eve:		,				·	-
		iic		(m³)	(m³)	(m³)		
	Eve 15 min	n Summer		0.0	6.5	0.0		31
	Even 15 min 30 min	n Summer n Summer	116.611	0.0	6.5 6.7	0.0		46
	Eve 15 min 30 min 60 min	n Summer n Summer n Summer	116.611 65.734	0.0 0.0 0.0	6.5 6.7 13.9	0.0 0.0 0.0		46 76
	15 min 30 min 60 min 120 min	n Summer n Summer n Summer n Summer	116.611 65.734 37.054	0.0 0.0 0.0 0.0	6.5 6.7 13.9 14.3	0.0 0.0 0.0 0.0		46 76 136
	15 min 30 min 60 min 120 min 180 min	n Summer n Summer n Summer n Summer n Summer	116.611 65.734 37.054 26.498	0.0 0.0 0.0 0.0 0.0	6.5 6.7 13.9 14.3 14.6	0.0 0.0 0.0 0.0 0.0		46 76 136 196
	15 min 30 min 60 min 120 min 180 min 240 min	a Summer Summer Summer Summer Summer Summer	116.611 65.734 37.054 26.498 20.887	0.0 0.0 0.0 0.0 0.0 0.0	6.5 6.7 13.9 14.3 14.6 14.7	0.0 0.0 0.0 0.0 0.0 0.0		46 76 136 196 256
	15 min 30 min 60 min 120 min 180 min 240 min 360 min	 Summer Summer Summer Summer Summer Summer Summer Summer 	116.611 65.734 37.054 26.498 20.887 14.937	0.0 0.0 0.0 0.0 0.0 0.0	6.5 6.7 13.9 14.3 14.6 14.7 14.9	0.0 0.0 0.0 0.0 0.0 0.0 0.0		46 76 136 196 256 376
	15 min 30 min 60 min 120 min 180 min 240 min 360 min 480 min	 Summer Summer Summer Summer Summer Summer Summer Summer Summer 	116.611 65.734 37.054 26.498 20.887 14.937 11.774	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	6.5 6.7 13.9 14.3 14.6 14.7 14.9 15.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		46 76 136 196 256 376 496
	15 min 30 min 60 min 120 min 180 min 240 min 360 min 480 min 600 min	 Summer 	116.611 65.734 37.054 26.498 20.887 14.937 11.774 9.790	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	6.5 6.7 13.9 14.3 14.6 14.7 14.9 15.0 15.1	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		46 76 136 256 376 496 616
	15 min 30 min 60 min 120 min 180 min 240 min 360 min 480 min 600 min 720 min	 Summer Summer Summer Summer Summer Summer Summer Summer Summer 	116.611 65.734 37.054 26.498 20.887 14.937 11.774 9.790 8.420	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	6.5 6.7 13.9 14.3 14.6 14.7 14.9 15.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		46 76 136 196 256 376 496
	15 min 30 min 60 min 120 min 180 min 240 min 360 min 480 min 600 min 720 min	Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	116.611 65.734 37.054 26.498 20.887 14.937 11.774 9.790	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	6.5 6.7 13.9 14.3 14.6 14.7 14.9 15.0 15.1	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		46 76 136 256 376 496 616 736
	15 min 30 min 60 min 120 min 180 min 240 min 360 min 480 min 600 min 720 min 960 min	Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	116.611 65.734 37.054 26.498 20.887 14.937 11.774 9.790 8.420 6.647		6.5 6.7 13.9 14.3 14.6 14.7 14.9 15.0 15.1 15.1	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		46 76 136 256 376 496 616 736 976
	15 min 30 min 60 min 120 min 180 min 240 min 360 min 480 min 600 min 720 min 960 min	Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	116.611 65.734 37.054 26.498 20.887 14.937 11.774 9.790 8.420 6.647 4.763		6.5 6.7 13.9 14.3 14.6 14.7 14.9 15.0 15.1 15.1 15.1 14.8	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		46 76 136 256 376 496 616 736 976 1454
	15 min 30 min 60 min 120 min 180 min 240 min 360 min 480 min 600 min 720 min 960 min 1440 min 2160 min	Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	116.611 65.734 37.054 26.498 20.887 14.937 11.774 9.790 8.420 6.647 4.763 3.413		6.5 6.7 13.9 14.3 14.6 14.7 14.9 15.0 15.1 15.1 15.1 14.8 31.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		46 76 136 256 376 496 616 736 976 1454 2176
	15 min 30 min 60 min 120 min 180 min 240 min 360 min 480 min 600 min 720 min 960 min 1440 min 2160 min 2880 min	 Summer 	116.611 65.734 37.054 26.498 20.887 14.937 11.774 9.790 8.420 6.647 4.763 3.413 2.694		6.5 6.7 13.9 14.3 14.6 14.7 14.9 15.0 15.1 15.1 15.1 14.8 31.0 30.6	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		46 76 136 256 376 496 616 736 976 1454 2176 2896
	15 min 30 min 60 min 120 min 180 min 240 min 360 min 480 min 600 min 720 min 960 min 1440 min 2160 min 2880 min	Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	116.611 65.734 37.054 26.498 20.887 14.937 11.774 9.790 8.420 6.647 4.763 3.413 2.694 1.907		6.5 6.7 13.9 14.3 14.6 14.7 14.9 15.0 15.1 15.1 15.1 14.8 31.0 30.6 29.1	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		46 76 136 256 376 496 616 736 976 1454 2176 2896 4332
	Ever 15 min 30 min 60 min 120 min 120 min 120 min 240 min 360 min 480 min 600 min 720 min 960 min 1440 min 2160 min 2880 min 4320 min 5760 min	Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	116.611 65.734 37.054 26.498 20.887 14.937 11.774 9.790 8.420 6.647 4.763 3.413 2.694 1.907 1.493		6.5 6.7 13.9 14.3 14.6 14.7 14.9 15.0 15.1 15.1 15.1 15.1 14.8 31.0 30.6 29.1 62.4	0.0 0.0		46 76 136 256 376 496 616 736 976 1454 2176 2896 4332 5776
	Ever 15 min 30 min 60 min 120 min 120 min 180 min 240 min 360 min 480 min 600 min 720 min 960 min 1440 min 2160 min 2880 min 4320 min 5760 min 7200 min	Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	116.611 65.734 37.054 26.498 20.887 14.937 11.774 9.790 8.420 6.647 4.763 3.413 2.694 1.907 1.493 1.234		6.5 6.7 13.9 14.3 14.6 14.7 14.9 15.0 15.1 15.1 15.1 15.1 14.8 31.0 30.6 29.1 62.4 60.9	0.0 0.0		46 76 136 196 256 376 496 616 736 976 1454 2176 2896 4332 5776 7208
	Ever 15 min 30 min 60 min 120 min 120 min 180 min 240 min 360 min 480 min 600 min 720 min 960 min 1440 min 2160 min 2880 min 4320 min 5760 min 7200 min 8640 min 10080 min	Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	116.611 65.734 37.054 26.498 20.887 14.937 11.774 9.790 8.420 6.647 4.763 3.413 2.694 1.907 1.493 1.234 1.057 0.927		6.5 6.7 13.9 14.3 14.6 14.7 14.9 15.0 15.1 15.1 15.1 15.1 15.1 14.8 31.0 30.6 29.1 62.4 60.9 59.3	0.0 0.0	1	46 76 136 196 256 376 496 616 736 976 1454 2176 2896 4332 5776 7208 8648
	Ever 15 min 30 min 60 min 120 min 120 min 180 min 240 min 360 min 480 min 600 min 720 min 960 min 1440 min 2160 min 2880 min 4320 min 5760 min 7200 min 8640 min 10080 min 30 min 30 min	 Summer 	116.611 65.734 37.054 26.498 20.887 14.937 11.774 9.790 8.420 6.647 4.763 3.413 2.694 1.907 1.493 1.234 1.057 0.927 206.868 116.611		6.5 6.7 13.9 14.3 14.6 14.7 14.9 15.0 15.1 15.1 15.1 15.1 14.8 31.0 30.6 29.1 62.4 60.9 59.3 57.4	0.0 0.0	1	46 76 136 196 256 376 496 616 736 976 1454 2176 2896 4332 5776 7208 8648 0088

Cannon Consulting Engineer Cambridge House		3411			Page		
Janwades Business Park			ioretenti	on 100 yr		<u></u>	
Centford CB8 7PN	1	IICU D D.		1011 100 yr			
Date 29/07/2014 14:29		ocianod	by james	horrand			
		-		lloward		LC.	
File B411 catchment B bio Micro Drainage		hecked b	oy ontrol 20	10 1 1			
iicro Drainage	2	Source Co	ontrol 20	13.1.1			
<u>Summary</u> Storm	y of R Max	esults f Max	<u>for 100 y</u> Max	ear Return Max	Period (Max	(+30%) Max	Status
				verflow Σ			Status
Ivent	(m)	(m)	(1/s)	(1/s)	(1/s)	(m ³)	
120 min Winter 9	9.735	0.335	0.1	0.0	0.1	298.2	Flood Risk
180 min Winter 9			0.1	0.0			Flood Risk
240 min Winter 9	9.766	0.366	0.1	0.0			Flood Risk
360 min Winter 9	9.785	0.385	0.1	0.0	0.1	359.7	Flood Risk
480 min Winter 9	9.798	0.398	0.1	0.0	0.1	377.6	Flood Risk
600 min Winter 9			0.1	0.0	0.1	392.0	Flood Risk
720 min Winter 9			0.1	0.0			Flood Risk
960 min Winter 9			0.1	0.0			Flood Risk
1440 min Winter 9			0.1	0.0			Flood Risk
2160 min Winter 9			0.1	0.0			Flood Risk
2880 min Winter 9			0.1	0.0			Flood Risk
4320 min Winter 9			0.1	0.0			Flood Risk
5760 min Winter 9 7200 min Winter 9			0.1	0.0			Flood Risk Flood Risk
7200 min Winter 9 8640 min Winter 9			0.1	0.0			Flood Risk Flood Risk
10080 min Winter 9			0.1	0.0			Flood Risk
Storm		Rain		Discharge			
Event			Volume	Volume	Volume	(mir	
			(m³)	(m ³)	(m ³)		
120 min W	inter	37.054	0.0	14.8	0.0		136
180 min Wi			0.0	15.1	0.0		194
240 min Wi				15.3			254
360 min Wi				15.5			374
480 min W				15.6			492
600 min Wi 720 min Wi				15.7			612 732
960 min Wi				15.7	0.0		
960 min Wi 1440 min Wi		6.647 4 763	0.0	15.6 15.3	0.0		970 1446
2160 min Wi		4.703 3.413		32.2			2164
2880 min Wi		2.694		31.7			2868
4320 min Wi		1.907		30.1			4288
5760 min Wi		1.493		64.8	0.0		5712
7200 min Wi				63.3			7136
8640 min Wi	inter			61.4			8560
10080 min Wi	inter	0.927	0.0	59.5	0.0		9984
	(01982-20	13 Micro	Drainage I	Ltd		

Cannon Consulti	ng Enginee	rs					Page	e 3			
Cambridge House			411				- age	-		_	
Lanwades Busine			rea B Bio	reter	ntion 1	00 vr	5				
Kentford CB8 7						1			STG	$\mathcal{Y} = ($	m
Date 29/07/2014		De	esigned b	v ian	nes how	ard	- 5				R
File B411 catch			necked by					250		ريك	G
Micro Drainage			ource Con		2013.1	.1				\sim	
			Rai	nfall	Detai	<u>ls</u>					
			ll Model					FE.	H		
	Return		(years)					10			
		Site :	Location	GB 5	50950 2	257200 I	'L 5095				
			C (1km) D1 (1km)					-0.02			
			D2 (1km)					0.29			
			D3 (1km)					0.26			
			E (1km)					0.31			
		0	F (1km)					2.48			
			r Storms r Storms					Ye Ye			
			(Summer)					0.75			
			(Winter)					0.84			
			m (mins)					1			
			m (mins)					1008			
	CI	limate	Change %					+3	0		
			Time	e Area	a Diagr	ram					
			Total	Area	(ha) (.480					
-	ins) Area !o: (ha)	Time From:	(mins) A To:	Area (ha)	Time From:	(mins) To:	Area (ha)	Time From:	(mins) To:	Area (ha)	
FIOM: I	.o. (iia)	riom.			riom.	10.	(IIA)	FIOM.	10.	(114)	
0	4 0.120	4	8 0	.120	8	12	0.120	12	16	0.120	

Cannon Consulting Engineers		Page 4
Cambridge House	B411	
Lanwades Business Park	Area B Bioretention 100	^{yr}
Kentford CB8 7PN		
Date 29/07/2014 14:29	Designed by james howar	
File B411 catchment B bio		
Micro Drainage	Source Control 2013.1.1	L
	Model Details	
Stora	age is Online Cover Leve	l (m) 100.000
	Bio-Retention Area Str	
	yert Level (m) 99.400 Po a (m²) Depth (m) Area (m	
0.000	620.0 0.300 1120	
	Filtration Outflow Co	
Permeability Coe	efficient (m/s) 0.000010	Area (m²) 50.000
	Safety Factor 10.000 Bed Depth (m) 0.450	Invert Level (m) 99.400
	Weir Overflow Cont:	rol
Discharge Coof	0.544 Width (m) 5.000 I	$n_{vert Level}(m) = 100,000$
	©1982-2013 Micro Draina	age Itd
	GIJUZ ZUIJ MICIU DIdING	

Cannon Consulting Engineers				I	Page 1	
Cambridge House	B411			ſ		
Lanwades Business Park	Area C Bi	oretent	ion 100 y	yr		
Kentford CB8 7PN			-	-	L'URERO C	\sim
Date 29/07/2014 14:28	Designed	by jame:	s howard		Dealesar	®
File B411 catchment C bio	Checked b		5 nonara			20
	Source Co	-	112 1 1	Ľ		
Micro Drainage	Source co	IILIOI 20	JIJ.I.I			
Summary of	Results f	or 100 t	vear Retu	In Per	iod (+30%)	
Summary of	Nesures I	<u>JI 100 y</u>	ear Netu	III ICI.	100 (1508)	
I	Half Drain	Time e	xceeds 7	davs.		
Outflow	is too lo	w. Desi	.gn is un	nsatisfa	actory.	
Storm	Max	Max	Max	Max	Status	
Event	Level	L Depth	Control	Volume	2	
	(m)	(m)	(l/s)	(m³)		
			0.1			
15 min Sum 20 min Sum				232.6		
30 min Sum				262.2		
60 min Sum 120 min Sum					5 Flood Risk	
120 min Sum 180 min Sum					9 Flood Risk	
180 min Sum 240 min Sum					9 Flood Risk	
240 min Sum 360 min Sum					9 Flood Risk 7 Flood Risk	
480 min Sum					/ Flood Risk 7 Flood Risk	
600 min Sum					3 Flood Risk	
720 min Sum					4 Flood Risk	
960 min Sum					l Flood Risk	
1440 min Sum					6 Flood Risk	
2160 min Sum					6 Flood Risk	
2880 min Sum					l Flood Risk	
4320 min Sum					9 Flood Risk	
5760 min Sum					5 Flood Risk	
7200 min Sum	mer 99.93	1 0.531	0.1	630.9	9 Flood Risk	
8640 min Sum	mer 99.93	7 0.537	0.1	641.8	8 Flood Risk	
10080 min Sum	mer 99.94	2 0.542	0.1	650.2	2 Flood Risk	
15 min Win	ter 99.67	2 0.272	0.1	260.5	б ОК	
30 min Win	ter 99.69	9 0.299	0.1	293.7	7 ОК	
60 min Win) Flood Risk	
Storm				-	Time-Peak	
Event	(mm)	/hr) Vo		olume	(mins)	
		(1	m³)	(m³)		
15 min 0	ummer 206	868	0.0	6.6	31	
	ummer 206 ummer 116		0.0	6.9		
	ummer 116		0.0	14.2		
	ummer 37		0.0	14.2		
	ummer 26		0.0	15.0		
240 min S		.887	0.0	15.2		
360 min S		.937	0.0	15.4		
480 min S		.774	0.0	15.6		
600 min S		.790	0.0	15.6		
720 min S	ummer 8	.420	0.0	15.6	736	
960 min S	ummer 6	.647	0.0	15.6	976	
1440 min S		.763	0.0	15.3		
2160 min S		.413	0.0	32.2		
2880 min S		.694	0.0	31.7		
4320 min S		.907	0.0	30.1		
5760 min S		.493	0.0	65.1		
7200 min S [.]		.234	0.0	63.5		
8640 min S		.057	0.0	61.6		
10080 min S		.927	0.0	59.6		
	inter 206 inter 116		0.0	6.9 7.1		
	inter 65		0.0	14.8		
US MILLI W					, ,	
	©1982-201	3 Micro	Drainage	e Ltd		

Cambridge House Lanwades Business		B411			F	age 2	
	Park	Area C Bic	retent	ion 100 s	<i>r</i> r		
Kentford CB8 7PN	TATK	nica e bie	1000110	1011 100 1	γ±	$[\dot{\mu}]$ (SL(0)	V
Date 29/07/2014 1	4:28	Designed b	v iames	s howard		Deales	
File B411 catchme		Checked by		, nonara			?E
Micro Drainage		Source Cor		013.1.1			
	Summary of	Results fo	<u>r 100 y</u>	ear Retu	rn Peri	od (+30%)	
	-					.	
	Storm	Max	Max	Max	Max	Status	
	Event	(m)	(m)	Control (1/s)	(m ³)		
		(,	()	(1)0)	()		
	120 min Win	ter 99.761	0.361	0.1	372.9	Flood Risk	
	180 min Win					Flood Risk	
	240 min Win 360 min Win					Flood Risk Flood Risk	
	480 min Win					Flood Risk	
	600 min Win					Flood Risk	
	720 min Win	ter 99.853	0.453	0.1	505.8	Flood Risk	
	960 min Win					Flood Risk	
	1440 min Win					Flood Risk	
	2160 min Win 2880 min Win					Flood Risk Flood Risk	
	4320 min Win					Flood Risk	
	5760 min Win					Flood Risk	
	7200 min Win	ter 99.976	0.576	0.1	709.8	Flood Risk	
	8640 min Win					Flood Risk	
	10080 min Win					Flood Risk	
	Storm Event		n Fic hr) Vo		charge olume	Time-Peak (mins)	
	Evenc	(11111/	•		(m ³)	(mills)	
				- ,	()		
		inter 37.		0.0	15.3	136	
	180 min W:	inter 26.	498	0.0	15.6	196	
	0.4.0		007	0 0	1 - 0		
	240 min W: 360 min W:			0.0	15.8 16 1	254	
	360 min W:	inter 14.	937	0.0 0.0 0.0	15.8 16.1 16.2	254 374 494	
	360 min W: 480 min W:		937 774	0.0	16.1	374	
	360 min W: 480 min W: 600 min W:	inter 14. inter 11.	937 774 790	0.0	16.1 16.2	374 494	
	360 min W: 480 min W: 600 min W: 720 min W: 960 min W:	inter 14. inter 11. inter 9. inter 8. inter 6.	937 774 790 420 647	0.0 0.0 0.0 0.0 0.0	16.1 16.2 16.2 16.3 16.2	374 494 612 732 970	
	360 min W 480 min W 600 min W 720 min W 960 min W 1440 min W	inter 14. inter 11. inter 9. inter 8. inter 6. inter 4.	937 774 790 420 647 763	0.0 0.0 0.0 0.0 0.0 0.0	16.1 16.2 16.2 16.3 16.2 15.9	374 494 612 732 970 1448	
	360 min W 480 min W 600 min W 720 min W 960 min W 1440 min W 2160 min W	inter 14. inter 11. inter 9. inter 8. inter 6. inter 4. inter 3.	937 774 790 420 647 763 413	0.0 0.0 0.0 0.0 0.0 0.0 0.0	16.1 16.2 16.2 16.3 16.2 15.9 33.6	374 494 612 732 970 1448 2164	
	360 min W 480 min W 600 min W 720 min W 960 min W 1440 min W	inter 14. inter 11. inter 9. inter 8. inter 6. inter 4. inter 3. inter 2.	937 774 790 420 647 763	0.0 0.0 0.0 0.0 0.0 0.0	16.1 16.2 16.2 16.3 16.2 15.9	374 494 612 732 970 1448 2164	
	360 min W 480 min W 600 min W 720 min W 960 min W 1440 min W 2160 min W	inter 14. inter 11. inter 9. inter 8. inter 6. inter 4. inter 3. inter 2. inter 1.	937 774 790 420 647 763 413 694	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	16.1 16.2 16.3 16.2 15.9 33.6 33.0	374 494 612 732 970 1448 2164 2880	
	360 min W 480 min W 600 min W 720 min W 960 min W 1440 min W 2160 min W 2880 min W 4320 min W 5760 min W	inter 14. inter 11. inter 9. inter 8. inter 6. inter 4. inter 3. inter 2. inter 1. inter 1.	937 774 790 420 647 763 413 694 907 493 234	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	16.1 16.2 16.3 16.2 15.9 33.6 33.0 31.3 67.8 66.1	374 494 612 732 970 1448 2164 2880 4292 5712 7136	
	360 min W 480 min W 600 min W 720 min W 960 min W 1440 min W 2160 min W 2880 min W 4320 min W	inter 14. inter 11. inter 9. inter 8. inter 6. inter 4. inter 3. inter 2. inter 1. inter 1. inter 1.	937 774 790 420 647 763 413 694 907 493	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	16.1 16.2 16.3 16.3 15.9 33.6 33.0 31.3 67.8	374 494 612 732 970 1448 2164 2880 4292 5712 7136	

annon Consulting Engineers ambridge House anwades Business Park entford CB8 7PN ate 29/07/2014 14:28 ile B411 catchment C bio Checked by icro Drainage Source Control 2013.1.1 Rainfall Details Rainfall Model FEH Return Period (years) Site Location GB 550950 257200 TL 50950 57200
entford CB8 7PN ate 29/07/2014 14:28 ile B411 catchment C bio Checked by icro Drainage Source Control 2013.1.1 Rainfall Details Rainfall Model FEH Return Period (years) 100
entford CB8 7PN ate 29/07/2014 14:28 Designed by james howard ile B411 catchment C bio Checked by icro Drainage Source Control 2013.1.1 Rainfall Details Rainfall Model FEH Return Period (years) 100
ile B411 catchment C bio Checked by icro Drainage Source Control 2013.1.1 Rainfall Details Rainfall Model FEH Return Period (years) 100
icro Drainage Source Control 2013.1.1 Rainfall Details Rainfall Model FEH Return Period (years) 100
Rainfall Details Rainfall Model FEH Return Period (years) 100
Rainfall ModelFEHReturn Period (years)100
Rainfall ModelFEHReturn Period (years)100
Return Period (years) 100
Return Period (years) 100
Site Location CB 550850 257200 TT 50850 57200
C (1km) -0.025
D1 (1km) 0.288 D2 (1km) 0.293
D3 (1km) 0.263
E (1km) 0.312
F (1km) 2.488
Summer Storms Yes
Winter Storms Yes Cv (Summer) 0.750
Cv (Winter) 0.840
Shortest Storm (mins) 15
Longest Storm (mins) 10080
Climate Change % +30
<u>Time Area Diagram</u>
Total Area (ha) 0.600
Time (mins) Area Time (mins) Area Time (mins) Area Time (mins) Area
From: To: (ha) From: To: (ha) From: To: (ha) From: To: (ha)
0 4 0.150 4 8 0.150 8 12 0.150 12 16 0.150

Cannon Consulting Engineers	Page 4					
Cambridge House	B411					
Lanwades Business Park	Area C Bioretention 100 yr					
Kentford CB8 7PN						
Date 29/07/2014 14:28	Designed by james howard					
File B411 catchment C bio	Checked by					
Micro Drainage	Source Control 2013.1.1					
Model Details						
Storage is Online Cover Level (m) 100.000						
Bio-Retention Area Structure						

Invert Level (m) 99.400 Porosity 1.00

Depth (m) Area (m^2) Depth (m) Area (m^2)

0.000 750.0 0.600 1840.0

Filtration Outflow Control

Permeability Coefficient (m/s) 0.000010 Area (m²) 50.000 Safety Factor 10.000 Invert Level (m) 99.400 Bed Depth (m) 0.450

Cannon Consulting Engineers		Page 1
Cambridge House		
Lanwades Business Park		
Kentford CB8 7PN		
Date 31/07/2014 15:58	Designed by james howard	Dentrece
File	Checked by	
Micro Drainage	Source Control 2013.1.1	

ICP SUDS Mean Annual Flood

Input

Return Period (years) 100 Soil 0.150 Area (ha) 1.000 Urban 0.000 SAAR (mm) 545 Region Number Region 5

Results 1/s

QBAR Rural 0.3 QBAR Urban 0.3 Q100 years 1.1 Q1 year 0.3 Q30 years 0.7 Q100 years 1.1

2016 H R Wallingford flood modelling report, MAM7720-RT001-R02-00

Review of surface water flood management

Fulbourn

MAM7720-RT001-R02-00

August 2016

Document information

Document permissions	Confidential - client
Project number	MAM7720
Project name	Review of surface water flood management
Report title	Fulbourn
Report number	RT001
Release number	R02-00
Report date	August 2016
Client	Castlefield International Ltd
Client representative	Daniel Coulson
Project manager	Mark Davison
Project director	Darren Lumbroso

Document history

Date	Release	Prepared	Approved	Authorised	Notes
11 Aug 2016	02-00	DML	MDA	MDA	Correction of typographical areas and minor clarifications
09 Aug 2016	01-00	MDA	DML	DML	

Document authorisation

Prepared

DM hung M. Dam

Approved

Authorised

M. Dam

© HR Wallingford Ltd

This report has been prepared for HR Wallingford's client and not for any other person. Only our client should rely upon the contents of this report and any methods or results which are contained within it and then only for the purposes for which the report was originally prepared. We accept no liability for any loss or damage suffered by any person who has relied on the contents of this report, other than our client.

This report may contain material or information obtained from other people. We accept no liability for any loss or damage suffered by any person, including our client, as a result of any error or inaccuracy in third party material or information which is included within this report.

To the extent that this report contains information or material which is the output of general research it should not be relied upon by any person, including our client, for a specific purpose. If you are not HR Wallingford's client and you wish to use the information or material in this report for a specific purpose, you should contact us for advice.

Contents

1.	Introduction	1				
2.	Hydrology	2				
	2.1. Background to the catchment					
	2.1.1. Hydrological approaches to estimating flood flows					
	2.1.2. Adjustment of catchment descriptors	3				
	2.2. Revitalised Flood Hydrograph model (ReFH2)	4				
	2.3. Direct runoff	5				
	2.4. Comparison of flows	6				
	2.5. Final method	7				
3.	Integrated Catchment Model (ICM) hydraulic of the Fulbourn catchment					
	3.1. Hydrological components	7				
	3.2. Representation of the site	7				
	3.3. Representation of the post development site	10				
4.	Results	11				
	4.1. Existing conditions	11				
	4.2. Post development flood modelling	13				
5.	Conclusions	16				
6.	References	16				
Fig	ures					

Figure 1.1: Environment Agency surface water flood map	1
Figure 2.1: Catchment boundary from FEH and LiDAR	2
Figure 2.2: Urban area and the impermeable area within the catchment	4
Figure 2.3: ReFH2 flow hydrographs	5
Figure 2.4: Surface water flow paths on the site	
Figure 2.5: Flow hydrographs from ReFH and the Direct Rainfall method for the 3.25 hour 100 year storm	7
Figure 3.1: Development scheme	10
Figure 4.1: Surface water flood depths for the 1 in 30 year rainfall	11
Figure 4.2: Surface water flood depths for the 1 in 100 year rainfall	12
Figure 4.3: Surface water flood depths for the 1 in 100 year rainfall plus 40% climate change	12
Figure 4.4: Surface water flood depths for the 1 in 1,000 year rainfall	13
Figure 4.5: Surface water flood depths for the 1 in 30 year rainfall with the development in place	14
Figure 4.6: Surface water flood depths for the 1 in 100 year rainfall with development in place	14
Figure 4.7: Surface water flood depths for the 1 in 100 year climate change rainfall with development in place	15
Figure 4.8: Surface water flood depths for the 1 in 1,000 year climate change rainfall with development in place	15

Tables Table 4.1: Change in peak flow downstream of the site1	6
Photographs	
Photograph 3.1: Typical view of the drainage channel through the site	8
Photograph 3.2: Eastern area of the site, looking to the east	9

1. Introduction

The overall objective of this work was to define the extent of surface water flooding, and determine the efficacy of the outline flood management measures for a proposed development site located in the village of Fulbourn located to the east of the city of Cambridge in Cambridgeshire. The Environment Agency's surface water flood map, shown in Figure 1.1, indicates that the site will be affected by surface water flooding during periods of extreme rainfall.

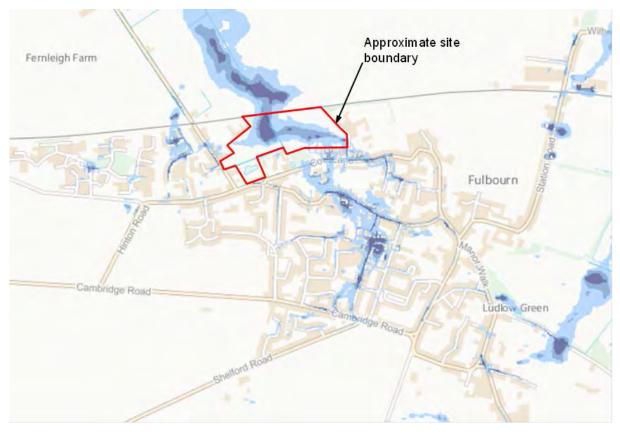
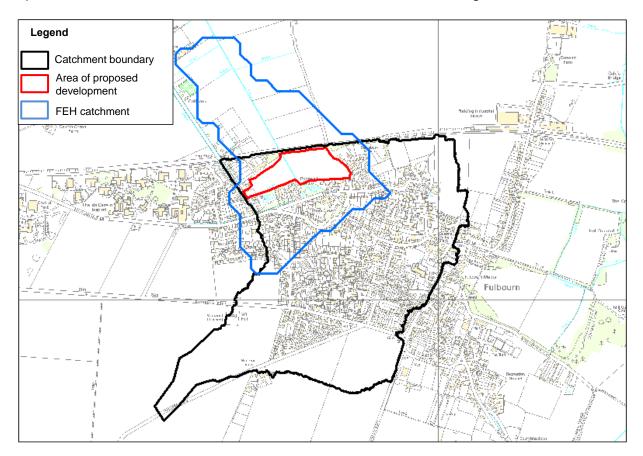


Figure 1.1: Environment Agency surface water flood map

Source: Environment Agency, 2015

As part of the study it will be necessary to estimate the 1 in 30 year (3.33% annual probability), 1 in 100 year (1% annual probability), 1 in 100 year climate change flows (i.e. +40%) and 1 in 1,000 year (0.1% annual probability) return period flood depths and extents associated with surface water flooding on the site, as well as assessing flood management measures to protect the proposed development from inundation by surface water floodwater, whilst also helping to avoid an increase in downstream flood risk.

We undertook a visit to the site on 28 April 2016. The objective of this site visit was to gain a better understanding of the hydrology of the catchment and the hydraulics of the watercourse including the downstream culvert that carries the drainage ditch under the railway to the north of the site.



2. Hydrology

2.1. Background to the catchment

The ungauged catchment draining to the site covers an area of some 1 km². The underlying geology is free draining chalk, although the catchment is quite heavily urbanised. This makes estimating flood flow hydrographs for the catchment challenging. Our approach is detailed below.

The catchment boundary in the Flood Estimation Handbook (FEH) draining to the site was found to be undersized when checked against a higher resolution LiDAR Digital Terrain Model (DTM). The catchment area derived from the LiDAR data was found to be 1.06 km² compared with 0.5 km² from the FEH. A comparison of the FEH and LiDAR-derived catchment boundaries is shown in Figure 2.1.

Figure 2.1: Catchment boundary from FEH and LiDAR

The UK soils map was used to check the Standard Percentage Runoff (SPR) for the catchment. This shows that the predominant soils class in the catchment is very permeable (511e with Host class of 1) and that using a FEH-derived SPR of 4.81 from catchment descriptors is appropriate.

2.1.1. Hydrological approaches to estimating flood flows

There are a number of hydrological approaches that can be used to estimate flood flows for the site including:

- Direct rainfall approach using a two dimensional (2D) model of the entire catchment to simulate the surface flow paths towards the drainage channel that runs through the site.
- The FEH Revitalised Flood Hydrograph model (ReFH2) rainfall runoff method It is acceptable to use this method because the catchment is small, highly permeable and has a large proportion of urban area. ReFH2 has improvements for modelling the urban component of runoff compared to previous versions of the FEH rainfall-runoff methods.
- The FEH statistical method This method is unlikely to be suitable for a catchment of this nature given the extent of the urban area, the high permeability of the soil and its small area.

We have thus undertaken ReFH2 and a direct rainfall approach to the hydrology.

2.1.2. Adjustment of catchment descriptors

The catchment descriptors from the FEH were adjusted to account for the catchment area because this is twice the value that is given in the FEH. The parameters that are most likely to be influenced by the change in catchment area are:

- DPLBAR Average drainage path length
- DPSBAR Average catchment slope
- URBEXT2000 Urban extent

The DPLBAR for the revised catchment area has been estimated using the equation in FEH1999 volume 1

DPLBAR = AREA 0.548

Assuming a catchment area of 1.06 km² gives a revised DPLBAR for the catchment of 1.032 km.

DPSBAR has been checked for the revised catchment area and found to be similar to that in the FEH catchment descriptors.

The urban area within the catchment was measured using the Ordnance Survey (OS) OS50K map as described in the ReFH2 Technical Report. The urban area within the revised catchment is 0.604 km² and the impermeable extent of the urban has been measured from the OS10K maps as 0.14 km² (These are shown in Figure 2.2). This is 29% of the urban area and is very similar to the default of 30% assumed in the ReFH2 Technical Report. The default value has been used in the calculations because this will result in slightly higher flows.

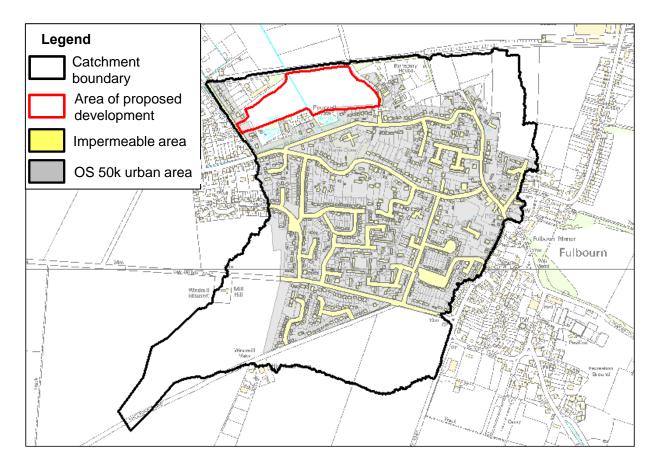


Figure 2.2: Urban area and the impermeable area within the catchment

2.2. Revitalised Flood Hydrograph model (ReFH2)

The revised catchment descriptors were entered into the FEH ReFH2 version 2.1 software and hydrographs were simulated for the following range of storm durations:

- 1.25 hour
- 3.25 hours
- 5.5 hours
- 9 hours

The summer rainfall profile produced a higher peak flow than the winter storm profile for the rainfall depthduration-frequency (DDF) information for the catchments derived from the new FEH rainfall model (FEH, 2013). This is because it is more "peaky" than the winter profile, owing to the prevalence of intense convective storms during the summer. This means the intensity is greater in the middle of the storm, thus the summer profile is more likely to be critical for surface water flooding in a small urbanised catchment such as that of Fulbourn. The resulting hydrographs, shown in Figure 2.3, show that the 3.25 hour storm duration is critical in terms of peak flow.

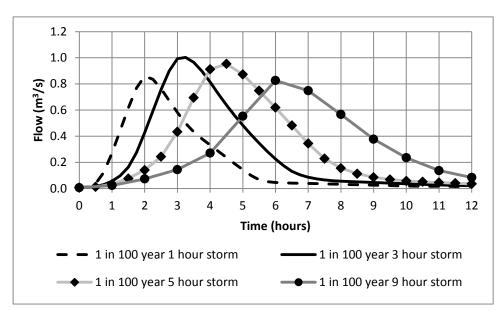


Figure 2.3: ReFH2 flow hydrographs

2.3. Direct runoff

The new FEH rainfall (FEH, 2013) was applied directly to a two dimensional (2D) hydrodynamic model mesh of the whole catchment. The ground elevations of the 2D mesh are based on LiDAR topographic data with a (0.5m horizontal resolution). The average triangular mesh element area is 16 m². The model does not include the drainage ditches or channels that run through the site or along-side roads. The main drainage ditch crossing the site has been included as a one dimensional (1D) hydraulic model. A base flow of 0.1 m³/s has been included in this ditch.

The percentage runoff applied was based on that from ReFH2 model. The rural areas use the percentage runoff of 6.1% calculated from a 'rural' ReFH2 run for the 3.25 hour 1 in 100 year return period summer storm. The urban areas follow the ReFH2 Technical Report where the area is split by the impermeable area, which is given a percentage runoff of 70% and the permeable area which has the same percentage runoff as the rural areas of the catchment. These values were combined to give an overall percentage runoff of 25.3% for the urban50K area.

Urban drainage systems vary in nature and their effectiveness in different storm events is linked to very local characteristics such as the arrangement and capacity of road gullies and whether drainage is via combined or separate sewerage systems. The Environment Agency has found that the calculated range of sewer capacities, in terms of rainfall, is in the range of 5 mm/hour to 54 mm/hour; with a typical drainage removal rate of 12 mm/hour across catchments in England and Wales. Anglian Water sewer plans do not indicate any surface water sewers within the identified catchment. We have therefore not accounted for drainage removal of rainfall in the model.

The advantage of the direct rainfall approach is that it is similar to the method that was used to produce the Environment Agency's surface water maps and it shows the flow paths of surface water flowing onto the site. This is shown in Figure 2.4, the main flow path is through the depression at the south of the site (Poorwell Water), where the drainage channel starts. A second flow path is across the site from the east towards the

drainage channel in the centre of the site. Approximately 70% of the total flow across the site follows the drainage path from the south and 20% follows the drainage path from the east and 10% from the south-west.

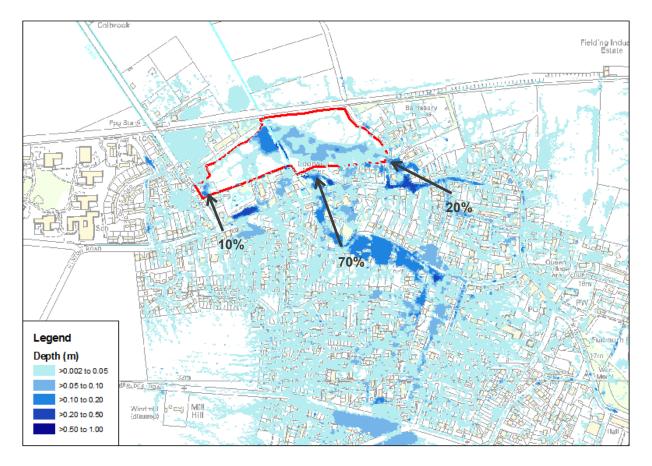
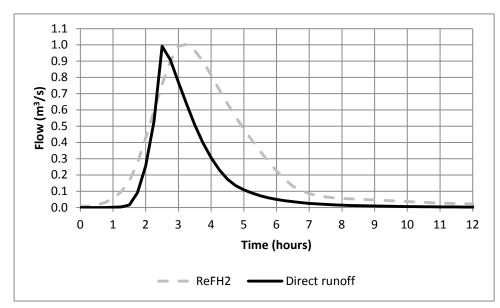



Figure 2.4: Surface water flow paths on the site

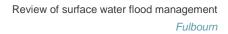
2.4. Comparison of flows

A comparison of the hydrographs generated using the ReFH2 and direct runoff methods is shown in Figure 2.5.

The main difference between the direct runoff approach and the ReFH2 is that not all of the catchment area defined by the DTM contributes flow along defined flow routes or even through the site because of the flat land at the base of the hill. Some of the difference between the hydrographs is also because ReFH2 includes the baseflow component, although this is very low approximately 0.02 m³/s.

2.5. Final method

Owing to the complexity of the catchment geology and its high degree of urbanisation we carried out two dimensional (2D) hydraulic modelling of the entire 1 km² catchment using the InfoWorks ICM software with an appropriate terrain sensitive triangular grid. This size of the grid used in the model was more detailed where the changes in slope are largest and also areas of particular interest such as the site itself.


3. Integrated Catchment Model (ICM) hydraulic of the Fulbourn catchment

3.1. Hydrological components

The catchment has been divided up into permeability zones, depending on the land use, as described in Section 2.3.

3.2. Representation of the site

The 2D model hydraulic model described in Section 2.3 was revised to include high resolution mesh cells on and around the development site and to include the local drainage network through the site. The drainage network through the site was represented with 1D river sections and culverts in the ICM modelling software. A base flow of 0.1 m³/s was assumed for the drainage channels. The open channels are dynamically linked

to the 2D mesh of the site and the surrounding catchment. At the time of the site visit there was dense vegetation on the banks of the channel with the channel bed relatively clear of vegetation. The Manning's 'n' roughness was therefore set to 0.03 on the channel bed and 0.05 to 0.075 on the sides of the channel, depending on the location. A typical view of the drainage channel through the site is shown in Photograph 3.1.

Photograph 3.1: Typical view of the drainage channel through the site

The culvert through the railway embankment was modelled with an arch culvert with a radius of 0.8 m and an invert level of 8.51 m AD. The Manning's n on the base was set to 0.03 and 0.018 on the arch. The 520 mm diameter circular culverts that link open drainage channels on the site was modelled with a Manning's n of 0.012.

The 2D mesh on the site was formed of a triangular mesh with the size of the triangles varying between 4 m^2 and 9 m^2 . The ground levels have been taken from the local site topographic survey provided to us. The existing vegetation on the site is typically rough grass for which a Manning's n roughness of 0.04 is appropriate. Photograph 3.2 and 3.3 show typical views of the eastern and western parts of the site.

Review of surface water flood management Fulbourn

Photograph 3.2: Eastern area of the site, looking to the east

Photograph 3.3: Western areas of the site, looking towards the centre of the site

3.3. Representation of the post development site

Post development ground levels were provided by Cannon Consulting Engineers. The ground levels show three raised development platforms that are to be raised by a few hundred millimetres above the original ground level. The boundary of each platform indicated below includes the surface water (runoff) attenuation facilities for each platform. A revised hydraulic model of the site was setup with the proposed development platforms, a lowered landscaped area/wide based channel to convey flows from the south-eastern corner of the site, and five 150 mm diameter pipes beneath a bunded footpath that joins the two platforms in the eastern part of the site. These are shown in Figure 3.1. The height of the footpath was set at 10.1 m AOD and the invert levels of the culverts are 9.58 m AOD.

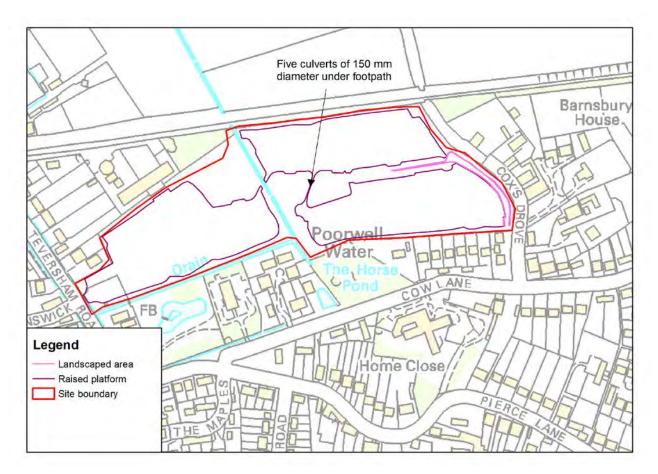


Figure 3.1: Development scheme

4. Results

4.1. Existing conditions

The InfoWorks ICM hydraulic model for existing conditions was run using FEH 2013 design rainfall profiles for the following return periods:

- 1 in 30 years
- 1 in 100 years
- 1 in 100 years plus 40% (Upper climate change scenario from the Environment Agency (2016))
- 1 in 1,000 years.

Flood extents and depths owing to surface water flooding on the site are shown in Figure 4.1 to Figure 4.4. The source of the water that causes the surface water flooding to the site is mainly from the adjacent housing and the site itself. Figure 4.1 to Figure 4.4 show that for the 1 in 30 year and 1 in 100 year annual probability return period rainfall events there is relatively shallow flow (i.e. < 10cm) across the site from the east towards the central channel. For the 1 in 1,000 year annual probability return period rainfall event this water is slightly deeper in places (i.e. up to 50 cm). The results of the modelling indicated that on the western part of the site there is an area of ponding next to the central channel in all rainfall events, where the bank level is higher than the surrounding land preventing the water draining into the channel. The depth of water in this area increases as the rainfall depth increases.

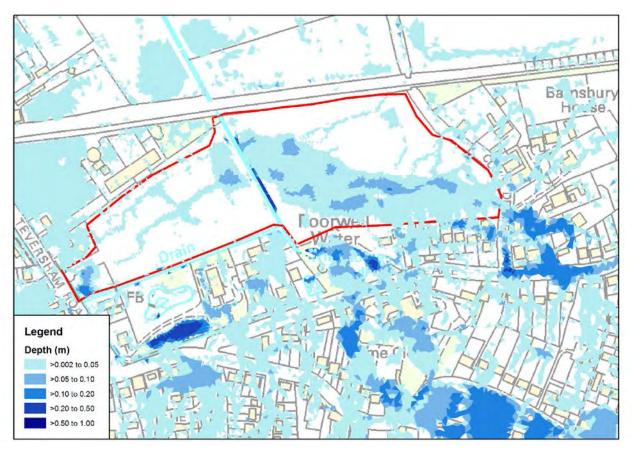


Figure 4.1: Surface water flood depths for the 1 in 30 year rainfall

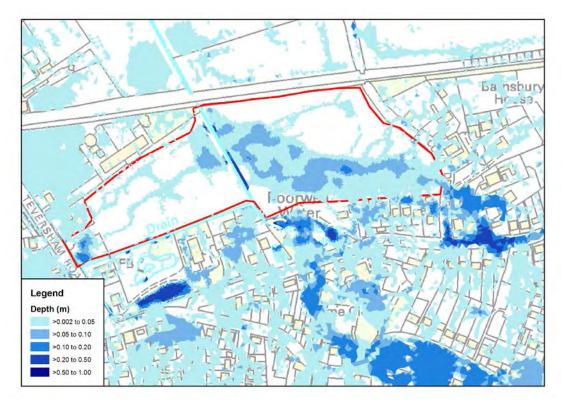


Figure 4.2: Surface water flood depths for the 1 in 100 year rainfall

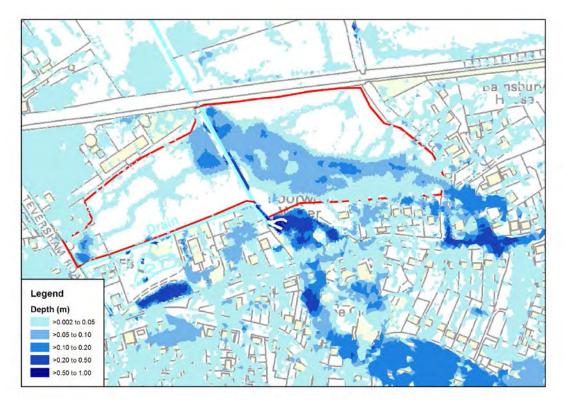


Figure 4.3: Surface water flood depths for the 1 in 100 year rainfall plus 40% climate change

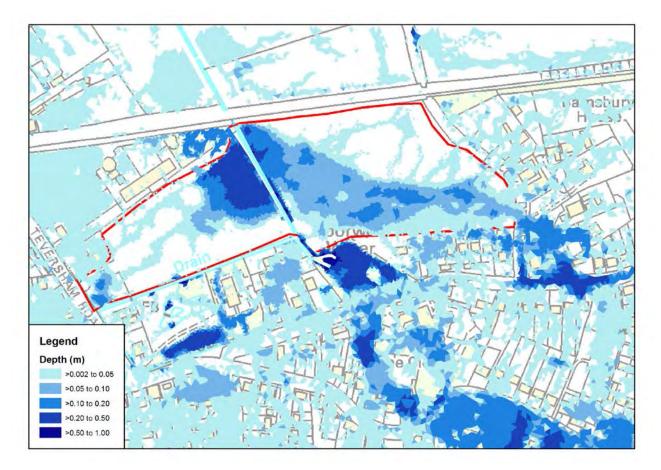


Figure 4.4: Surface water flood depths for the 1 in 1,000 year rainfall

4.2. Post development flood modelling

The InfoWorks ICM hydraulic model for the post development conditions (i.e. with the ares to be developed raised out of the surface floodwater) was run using the FEH 2013 design rainfall profiles for the following return periods:

- 1 in 30 years
- 1 in 100 years
- 1 in 100 years plus 40% (Upper climate change scenario from the Environment Agency (2016))
- 1 in 1,000 years.

Flood extents and depths owing to surface water flooding on the site are shown in Figure 4.5 to Figure 4.8.

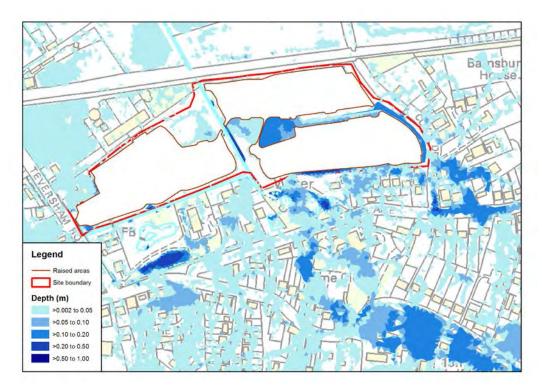


Figure 4.5: Surface water flood depths for the 1 in 30 year rainfall with the development in place

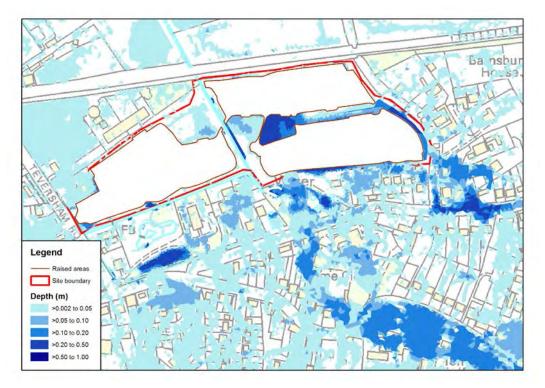


Figure 4.6: Surface water flood depths for the 1 in 100 year rainfall with development in place

Review of surface water flood management Fulbourn

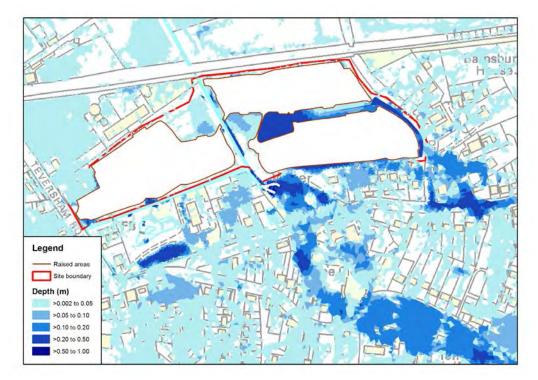


Figure 4.7: Surface water flood depths for the 1 in 100 year climate change rainfall with development in place

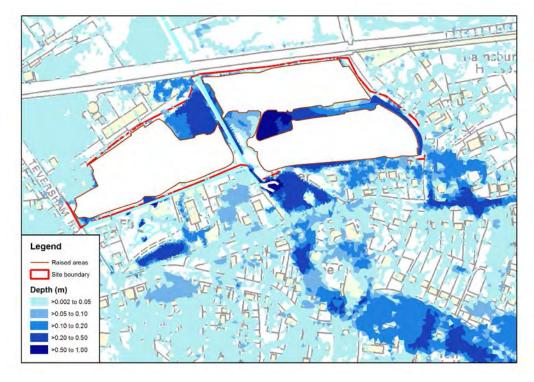


Figure 4.8: Surface water flood depths for the 1 in 1,000 year climate change rainfall with development in place

The peak flows through the railway embankment with the proposed development in place have been compared to existing conditions(see Table 4.1). The comparison shows that the configuration of the proposed development platforms leads to a slight decrease in peak flows downstream of the site.

Return period (years)	Peak flow in existing conditions (m ³ /s)	Change in peak flow with the development in place at the culvert passing under the railway embankment at the downstream end of the site (%)
1 in 30 year	0.68	-3.8%
1 in 100 year	1.12	-6.7%
1 in 100 year plus 40% climate change	1.58	-3.6%
1 in 1,000 year	1.66	-0.9%

Table 4.1: Change in peak flow downstream of the site

5. Conclusions

Design flows through the site have been assessed with a direct rainfall approach and the ReFH2, both methods give similar magnitude of peak flow at the culvert through the railway embankment at the downstream end of the site.

An integrated 1D-2D hydraulic model of the catchment has been used to simulate the surface water flood extents and depths on the proposed development site for existing conditions. The model includes the detail of the drainage channel system through the site and under the railway embankment. The resulting 1 in 100 year flood extent for the existing situation is larger than that shown on the Environment Agency's surface water flood map. It is possible to raise the development so that it is unaffected by surface water flooding. The hydraulic modelling of design floods shows that post-development there would be a slight reduction in peak flow downstream of the site for all return periods. This reduction in downstream flow may allow for an increased discharge rate from the proposed surface water attenuation facilities.

6. References

Bayliss, A. (1999) Flood Estimation Handbook Volume 5: Catchment Descriptors. Institute of Hydrology.

Boorman, D.B., Hollis, J.M., and Lilly, A. (1995) Institute of Hydrology Report No. 126. Hydrology of soil types: a hydrologically-based classification of the soils of the United Kingdom. Institute of Hydrology.

Wallingford HydroSolutions (2015) The Revitalised Flood Hydrograph Model ReFH2: Technical Guidance. www.hydrosolutions.co.uk

Environment Agency (2016) Flood risk assessments: climate change allowances. https://www.gov.uk/guidance/flood-risk-assessments-climate-change-allowances#table-1

HR Wallingford, Howbery Park, Wallingford, Oxfordshire OX10 8BA, United Kingdom tel +44 (0)1491 835381 fax +44 (0)1491 832233 email info@hrwallingford.com www.hrwallingford.com

FS 516431 EMS 558310 OHS 595357

Revised surface water calculations (with 40 % allowance for climate change)

Cannon Consulting Engineers	Page 1	
Cambridge House	B411	
Lanwades Business Park	Area A Bioretention 100 yr	L.
Kentford CB8 7PN	40 % CC	Micro
Date 09/01/2017 13:39	Designed by JOH	Desinado
File B411 catchment A bio ret	Checked by	Diamaye
Micro Drainage	Source Control 2016.1	

Summary of Results for 100 year Return Period (+40%)

Half Drain Time exceeds 7 days.

Outflow is too low. Design is unsatisfactory.

	Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (l/s)	Max Control (1/s)	Max Overflow (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
15	min S	ummer	99.613	0.213	0.0	0.1	0.0	0.1	407.2	O K
30	min S	ummer	99.638	0.238	0.0	0.1	0.0	0.1	459.0	ОК
60	min S	ummer	99.667	0.267	0.0	0.1	0.0	0.1	517.4	ОК
120	min S	ummer	99.698	0.298	0.0	0.1	0.0	0.1	582.9	ОК
180	min S	ummer	99.722	0.322	0.0	0.1	0.0	0.1	624.9	Flood Risk
240	min S	ummer	99.740	0.340	0.0	0.1	0.0	0.1	656.5	Flood Risk
360	min S	ummer	99.766	0.366	0.0	0.1	0.0	0.1	703.5	Flood Risk
480	min S	ummer	99.785	0.385	0.0	0.1	0.0	0.1	738.6	Flood Risk
600	min S	ummer	99.800	0.400	0.0	0.2	0.0	0.2	767.0	Flood Risk
720	min S	ummer	99.813	0.413	0.0	0.2	0.0	0.2	790.8	Flood Risk
960	min S	ummer	99.835	0.435	0.0	0.2	0.0	0.2	830.8	Flood Risk
1440	min S	ummer	99.866	0.466	0.0	0.2	0.0	0.2	889.8	Flood Risk
2160	min S	ummer	99.898	0.498	0.0	0.2	0.0	0.2	951.6	Flood Risk
2880	min S	ummer	99.921	0.521	0.0	0.2	0.0	0.2	996.7	Flood Risk
4320	min S	ummer	99.947	0.547	0.0	0.2	0.0	0.2	1048.1	Flood Risk
5760	min S	ummer	99.964	0.564	0.0	0.2	0.0	0.2	1083.5	Flood Risk
7200	min S	ummer	99.977	0.577	0.0	0.2	0.0	0.2	1109.5	Flood Risk

	Storm Event		Rain (mm/hr)		Discharge Volume (m³)	Overflow Volume (m ³)	Time-Peak (mins)
15	min S	Summer	222.781	0.0	10.1	0.0	31
30	min S	Summer	125.581	0.0	10.5	0.0	46
60	min S	Summer	70.790	0.0	21.8	0.0	76
120	min S	Summer	39.904	0.0	22.6	0.0	136
180	min S	Summer	28.536	0.0	23.2	0.0	196
240	min S	Summer	22.494	0.0	23.6	0.0	256
360	min S	Summer	16.086	0.0	24.2	0.0	376
480	min S	Summer	12.680	0.0	24.5	0.0	496
600	min S	Summer	10.543	0.0	24.7	0.0	616
720	min S	Summer	9.067	0.0	24.8	0.0	736
960	min S	Summer	7.158	0.0	24.8	0.0	976
1440	min S	Summer	5.129	0.0	24.5	0.0	1456
2160	min S	Summer	3.675	0.0	52.1	0.0	2176
2880	min S	Summer	2.901	0.0	51.4	0.0	2896
4320	min S	Summer	2.054	0.0	48.7	0.0	4332
5760	min S	Summer	1.607	0.0	106.5	0.0	5776
7200	min S	Summer	1.329	0.0	103.8	0.0	7216
			©1982-	2016 XF	Solution	ns	

Cannon Consulting Engineers	Page 2	
Cambridge House	B411	
Lanwades Business Park	Area A Bioretention 100 yr	L.
Kentford CB8 7PN	40 % CC	Micco
Date 09/01/2017 13:39	Designed by JOH	Desinado
File B411 catchment A bio ret	Checked by	Diamaye
Micro Drainage	Source Control 2016.1	

Sum	<u>mary o</u>	f Res	ults for 10	<u>0 year</u>	Return Pe	riod (+	40응)	
Storm Event	Max Level (m)	Max Depth (m)	Max Infiltration (l/s)	Max Control (l/s)	Max Overflow Σ (l/s)	Max Outflow (1/s)	Max Volume (m³)	Status
8640 min Summer 10080 min Summer 15 min Winter 30 min Winter 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter	99.994 99.613 99.638 99.667 99.698 99.722 99.740	0.594 0.213 0.238 0.267 0.298 0.322 0.340	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1	$\begin{array}{c} 0 \ . \ 0 \\ 0 \ . \ 0 \\ 0 \ . \ 0 \\ 0 \ . \ 0 \\ 0 \ . \ 0 \\ 0 \ . \ 0 \\ 0 \ . \ 0 \\ 0 \ . \ 0 \\ 0 \ . \ 0 \\ 0 \ . \ 0 \\ 0 \ . \ 0 \end{array}$		1145.2 407.2 459.0 517.4 582.9 624.9 656.5	Flood Risk Flood Risk O K O K O K Flood Risk Flood Risk Flood Risk
480 min Winter 600 min Winter 720 min Winter 960 min Winter 1440 min Winter 2160 min Winter 2880 min Winter 4320 min Winter 5760 min Winter	99.801 99.813 99.835 99.866 99.898 99.921 99.947 99.964	0.401 0.413 0.435 0.466 0.498 0.521 0.547 0.564	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.2	767.0 790.8 830.8 889.9 951.7 996.8 1048.3 1083.8	Flood Risk Flood Risk Flood Risk Flood Risk Flood Risk Flood Risk Flood Risk Flood Risk Flood Risk

Stor Even		Rain (mm/hr)	Flooded Volume (m ³)	Discharge Volume (m ³)	Overflow Volume (m³)	Time-Peak (mins)
8640 min	Summor	1.138	0.0	100.6	0.0	8648
10080 min		0.998	0.0	96.9	0.0	10088
		222.781	0.0	10.1	0.0	31
		125.581	0.0	10.1	0.0	46
	Winter	70.790	0.0	21.8	0.0	76
120 min			0.0	22.6		136
120 min			0.0	23.2		194
240 min			0.0	23.2		254
360 min		16.086	0.0	24.2	0.0	374
480 min		12.680	0.0	24.5	0.0	492
600 min		10.543	0.0	24.7	0.0	612
720 min			0.0	24.8	0.0	732
960 min			0.0	24.8	0.0	970
1440 min		5.129	0.0	24.5	0.0	1448
2160 min		3.675	0.0	52.1	0.0	2164
2880 min			0.0	51.4	0.0	2880
4320 min			0.0	48.6	0.0	4292
5760 min			0.0	106.5	0.0	5712
7200 min			0.0	103.8	0.0	7136
				Solution	S	

Cannon Consulting	g Engin	neers								Page 3		
Cambridge House				B411						_		
Lanwades Business	s Park			Area A	Bioret	ent	ion 10)0 yr		4		
Kentford CB8 7PM	V			40 % CC				-		Mission		
Date 09/01/2017 1	L3:39			Designe	d by J	ЈОН				MICIO		
File B411 catchme		oio re		Checked	-					Drainage		
Micro Drainage						51 2	016.1					
Summary of Results for 100 year Return Period (+40%)												
Storm	Max	Max	Max		Max	Max		Max	Max	Status		
Event				ation Co								
	(m)	(m)	(1/s	5) ()	1/s)	(1/s	s)	(1/s)	(m³)			
8640 min Winter 10080 min Winter				0.0	0.2		0.0			Flood Risk Flood Risk		
	Storm Event		Rain (mm/hr)	Flooded Volume (m³)	Discha Volur (m ³)	ne	Overflo Volume (m³)		-Peak ns)			
864	10 min V	Vinter	1.138	0.0	10	0.5	0.	.0	8560			
1008	30 min V	Vinter	0.998	0.0	9	6.8	0.	. 0	9984			
			©1982-	2016 XP	Solut	ion	S					

Cannon Consulting Engineers	Page 4									
Cambridge House	B411									
Lanwades Business Park	Area A Bioretention 100 yr									
Kentford CB8 7PN	40 % CC									
Date 09/01/2017 13:39	Designed by JOH Checked by									
File B411 catchment A bio ret Checked by										
Micro Drainage	Source Control 2016.1									
Rainfall Mod Return Period (year	rs) 100 ion GB 550950 257200 TL 50950 57200 km) -0.025 km) 0.288 km) 0.293 km) 0.263 km) 0.312 km) 2.488 rms Yes									
Cv (Summe Cv (Winte Shortest Storm (min Longest Storm (min Climate Change <u>Tin</u>	er) 0.950 ns) 15 ns) 10080									
Tot	tal Area (ha) 0.770									
Time (mins) Area Time (mins) From: To: (ha) From: To:										
0 4 0.200 4	8 0.200 8 12 0.200 12 16 0.170									
	2-2016 XP Solutions									

Cannon Consulting Engineers		Page 5
Cambridge House	B411	
Lanwades Business Park	Area A Bioretention 100 yr	L.
Kentford CB8 7PN	40 % CC	Micco
Date 09/01/2017 13:39	Designed by JOH	Desinado
File B411 catchment A bio ret	Checked by	Drainage
Micro Drainage	Source Control 2016.1	L
	Model Details	
Storage is O	nline Cover Level (m) 100.000	
<u>C</u> (omplex Structure	
<u>B1</u>	o-Retention Area	
	nfiltration Coefficient Base (m/hr) 0.000 nfiltration Coefficient Side (m/hr) 0.000	
Safety Factor 2.0		
Depth (m) Area (m²) Perim	eter (m) Depth (m) Area (m ²) Perimeter (m)
0.000 1448.0	134.893 0.600 2062.0 160.9	72
<u>C</u>	<u>ellular Storage</u>	
	ert Level (m) 99.400 Safety Factor 2.0 t Base (m/hr) 0.00000 Porosity 0.95 t Side (m/hr) 0.00000	
Depth (m) Area (m²) Inf. A	rea (m ²) Depth (m) Area (m ²) Inf. Area (m²)
0.000 382.0 0.300 382.0	382.0 0.301 0.0 40 405.5 40	5.5
Filtra	tion Outflow Control	
-	t (m/s) 0.000010 Area (m²) 80.000 Factor 10.000 Invert Level (m) 99.400 pth (m) 0.450	
Wein	r Overflow Control	
Discharge Coef 0.544 W	idth (m) 5.000 Invert Level (m) 100.000	
	2-2016 XP Solutions	

Cannon Consulting Engineers	Page 1	
Cambridge House	B411	
Lanwades Business Park	Area B Bioretention 100 yr	L.
Kentford CB8 7PN	40 % CC	Micco
Date 09/01/2017 13:36	Designed by JOH	Desinado
File B411 CATCHMENT B BIO RET	Checked by	Diamaye
Micro Drainage	Source Control 2016.1	

Summary of Results for 100 year Return Period (+30%)

Half Drain Time exceeds 7 days.

Outflow is too low. Design is unsatisfactory.

	Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (l/s)	Max Control (1/s)	Max Overflow (1/s)	Max E Outflow (l/s)	Max Volume (m³)	Status
15	min S	Summer	99.599	0.199	0.0	0.1	0.0	0.1	235.7	ОК
30	min S	Summer	99.621	0.221	0.0	0.1	0.0	0.1	265.7	ОК
60	min S	Summer	99.646	0.246	0.0	0.1	0.0	0.1	299.5	ОК
120	min S	Summer	99.673	0.273	0.0	0.1	0.0	0.1	337.4	ОК
180	min S	Summer	99.690	0.290	0.0	0.1	0.0	0.1	361.7	ОК
240	min S	Summer	99.703	0.303	0.0	0.1	0.0	0.1	380.0	Flood Risk
360	min S	Summer	99.733	0.333	0.0	0.1	0.0	0.1	407.1	Flood Risk
480	min S	Summer	99.754	0.354	0.0	0.1	0.0	0.1	427.5	Flood Risk
600	min S	Summer	99.771	0.371	0.0	0.1	0.0	0.1	443.8	Flood Risk
720	min S	Summer	99.785	0.385	0.0	0.1	0.0	0.1	457.6	Flood Risk
960	min S	Summer	99.807	0.407	0.0	0.1	0.0	0.1	480.7	Flood Risk
1440	min S	Summer	99.839	0.439	0.0	0.1	0.0	0.1	514.8	Flood Risk
2160	min S	Summer	99.870	0.470	0.0	0.1	0.0	0.1	550.3	Flood Risk
2880	min S	Summer	99.892	0.492	0.0	0.1	0.0	0.1	576.2	Flood Risk
4320	min S	Summer	99.916	0.516	0.0	0.1	0.0	0.1	605.6	Flood Risk
5760	min S	Summer	99.932	0.532	0.0	0.1	0.0	0.1	625.7	Flood Risk
7200	min S	Summer	99.943	0.543	0.0	0.1	0.0	0.1	640.4	Flood Risk

	Sto: Ever		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Overflow Volume (m ³)	Time-Peak (mins)
15	min	Summer	206.868	0.0	6.2	0.0	31
30	min	Summer	116.611	0.0	6.4	0.0	46
60	min	Summer	65.734	0.0	13.2	0.0	76
120	min	Summer	37.054	0.0	13.7	0.0	136
180	min	Summer	26.498	0.0	13.9	0.0	196
240	min	Summer	20.887	0.0	14.1	0.0	256
360	min	Summer	14.937	0.0	14.5	0.0	376
480	min	Summer	11.774	0.0	14.8	0.0	496
600	min	Summer	9.790	0.0	14.9	0.0	616
720	min	Summer	8.420	0.0	15.0	0.0	736
960	min	Summer	6.647	0.0	15.1	0.0	976
1440	min	Summer	4.763	0.0	14.9	0.0	1456
2160	min	Summer	3.413	0.0	31.7	0.0	2176
2880	min	Summer	2.694	0.0	31.3	0.0	2896
4320	min	Summer	1.907	0.0	29.6	0.0	4332
5760	min	Summer	1.493	0.0	64.7	0.0	5776
7200	min	Summer	1.234	0.0	63.1	0.0	7216
			©1982-	2016 XF	Solution	ns	

Cannon Consulting Engineers		Page 2
Cambridge House	B411	
Lanwades Business Park	Area B Bioretention 100 yr	L.
Kentford CB8 7PN	40 % CC	Micro
Date 09/01/2017 13:36	Designed by JOH	Desinado
File B411 CATCHMENT B BIO RET	Checked by	Diamage
Micro Drainage	Source Control 2016.1	

	Sum	<u>mary o</u>	f Res	ults for 10	<u>0 year</u>	Return P	eriod (+	<u>30%)</u>	
Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (l/s)	Max Control (l/s)	Max Overflow (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
8640 mir	Summer	99.952	0.552	0.0	0.1	0.0	0.1	651.7	Flood Risk
10080 mir	Summer	99.959	0.559	0.0	0.1	0.0	0.1	660.4	Flood Risk
15 mir	Winter	99.599	0.199	0.0	0.1	0.0	0.1	235.7	0 K
30 mir	Winter	99.621	0.221	0.0	0.1	0.0	0.1	265.7	O K
60 mir	Winter	99.646	0.246	0.0	0.1	0.0	0.1	299.5	O K
120 mir	Winter	99.673	0.273	0.0	0.1	0.0	0.1	337.4	O K
180 mir	Winter	99.690	0.290	0.0	0.1	0.0	0.1	361.7	O K
240 mir	Winter	99.703	0.303	0.0	0.1	0.0	0.1	380.0	Flood Risk
360 mir	Winter	99.733	0.333	0.0	0.1	0.0	0.1	407.1	Flood Risk
480 mir	Winter	99.754	0.354	0.0	0.1	0.0	0.1	427.5	Flood Risk
600 mir	Winter	99.771	0.371	0.0	0.1	0.0	0.1	443.8	Flood Risk
720 mir	Winter	99.785	0.385	0.0	0.1	0.0	0.1	457.6	Flood Risk
960 mir	Winter	99.807	0.407	0.0	0.1	0.0	0.1	480.7	Flood Risk
1440 mir	Winter	99.839	0.439	0.0	0.1	0.0	0.1	514.8	Flood Risk
2160 mir	Winter	99.870	0.470	0.0	0.1	0.0	0.1	550.4	Flood Risk

0.0

0.0

0.0

0.1

0.1

0.1

0.0 0.1 0.0

0.0

0.0

0.0

2880 min Winter 99.892 0.492

4320 min Winter 99.916 0.516

5760 min Winter 99.932 0.532

7200 min Winter 99.944 0.544

0.1 576.3 Flood Risk

0.1 605.8 Flood Risk

0.1 626.0 Flood Risk

0.1 640.8 Flood Risk

	Storm Event		Flooded Volume (m³)	Discharge Volume (m³)	Overflow Volume (m ³)	Time-Peak (mins)
8640 1	min Summer	1.057	0.0	61.1	0.0	8648
10080 1	min Summer	0.927	0.0	59.0	0.0	10088
15 r	min Winter	206.868	0.0	6.2	0.0	31
30 1	min Winter	116.611	0.0	6.4	0.0	46
60 1	min Winter	65.734	0.0	13.2	0.0	76
120 1	min Winter	37.054	0.0	13.7	0.0	136
180 1	min Winter	26.498	0.0	13.9	0.0	196
240 1	min Winter	20.887	0.0	14.1	0.0	254
360 1	min Winter	14.937	0.0	14.5	0.0	374
480 1	min Winter	11.774	0.0	14.8	0.0	494
600 1	min Winter	9.790	0.0	14.9	0.0	612
720 1	min Winter	8.420	0.0	15.0	0.0	732
960 i	min Winter	6.647	0.0	15.1	0.0	970
1440 m	min Winter	4.763	0.0	14.9	0.0	1448
2160 1	min Winter	3.413	0.0	31.7	0.0	2164
2880 1	min Winter	2.694	0.0	31.3	0.0	2880
4320 i	min Winter	1.907	0.0	29.6	0.0	4292
5760 1	min Winter	1.493	0.0	64.7	0.0	5712
7200 1	min Winter	1.234	0.0	63.0	0.0	7136
		©1982-2	2016 XP	Solution	S	

Cannon Consulting	g Engineers	3						Page 3
Cambridge House			B411					
Lanwades Busines			Area B		ention	100 yr		Ly
Kentford CB8 7PI			40 % CC					Mirro
Date 09/01/2017 1			Designe	-	ΟH			Drainage
File B411 CATCHM	ENT B BIO F	RET	Checked					Drainage
Micro Drainage			Source	Control	2016.	1		
Sum	mary of Rea	sults f	or 100 y	year Re	turn P	eriod (·	+30%)	
Storm Event	Max Max Level Depth (m) (m)	Ma: n Infiltr (1/3	ation Co		Max erflow (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
		<u>,</u>	0.0	0 1	0 0	0 1	(50.1	
8640 min Winter 10080 min Winter			0.0	0.1 0.1	0.0			Flood Risk Flood Risk
	Storm Event	Rain (mm/hr)	Flooded Volume (m³)	Dischar Volume (m ³)	-	•	e-Peak ins)	
864	40 min Winter	1.057	0.0	61	.1	0.0	8560	
1008	30 min Winter	0.927	0.0	58	.9	0.0	9984	
		©1982-	2016 XP	Soluti	ons			

Cannon Consulting Engineers							Page 4
Cambridge House	B411						
Lanwades Business Park		B Bioi	retenti	lon 10	0 yr		4
Kentford CB8 7PN	40 %				-		- Com
Date 09/01/2017 13:36	Desig	ned by	y JOH				
File B411 CATCHMENT B BIO RET.	Check	ed by					Drainage
Micro Drainage	Sourc	e Cont	crol 20	016.1			
C D1 D2 D3				L 5095	FE. 10 0 5720 -0.02 0.28 0.29 0.26 0.31	0 0 5 8 3 3	
	(1km)				2.48		
Summer S Winter S					Ye Ye		
Winter S Cv (Si					1e 0.95		
Cv (Wi					0.95		
Shortest Storm Longest Storm					1 1008		
Climate Cha					+3	0	
	<u>Time Are</u>	a Diac	gram				
	Total Area	(ha) (0.480				
Time (mins) Area Time (m From: To: (ha) From: '	ins) Area Io: (ha)		(mins) To:		Time From:		
0 4 0.120 4	8 0.120	8	12	0.120	12	16	0.120
	982-2016	VD 0-1					
©1	982-2016	XP SO	Lutions	3			

Cannon Consulting Engineers			Page 5
Cambridge House	B411		
Lanwades Business Park Kentford CB8 7PN	Area B Bioretentio 40 % CC	n 100 yr	Min
Date 09/01/2017 13:36	Designed by JOH		
File B411 CATCHMENT B BIO RET	. Checked by		Diamatje
Micro Drainage	Source Control 201	6.1	
	Model Details		
Storage is	Online Cover Level (m) 1	00.000	
	<u>Complex Structure</u>		
]	Bio-Retention Area		
	Infiltration Coefficient Infiltration Coefficient		
Depth (m) Area (m²) Per	meter (m) Depth (m) Area	(m²) Perimeter (m	n)
0.000 233.0	162.000 0.600	651.0 177.00	00
	<u>Cellular Storage</u>		
Infiltration Coefficie	vert Level (m) 99.400 Sant Base (m/hr) 0.00000 ent Side (m/hr) 0.00000		
Depth (m) Area (m²) Inf.	Area (m ²) Depth (m) Area	(m²) Inf. Area (I	m²)
0.000 612.0 0.300 612.0	612.0 641.7	0.0 643	1.7
1	<u>lio-Retention Area</u>		
	Infiltration Coefficient Infiltration Coefficient		
Depth (m) Area (m²) Per	meter (m) Depth (m) Area	(m²) Perimeter (n	n)
0.000 252.0	197.000 0.600	751.0 217.00	00
Filt	ation Outflow Control	<u>L</u>	
	ent (m/s) 0.000010 y Factor 10.000 Invert bepth (m) 0.450	Area (m²) 50.000 Level (m) 99.400	
©19	82-2016 XP Solutions		

Cannon Consulting Engineers		Page 6
Cambridge House	B411	
Lanwades Business Park	Area B Bioretention 100 yr	L
Kentford CB8 7PN	40 % CC	Micco
Date 09/01/2017 13:36	Designed by JOH	Desinado
File B411 CATCHMENT B BIO RET	Checked by	Diamaye
Micro Drainage	Source Control 2016.1	

<u>Weir Overflow Control</u>

Discharge Coef 0.544 Width (m) 5.000 Invert Level (m) 100.000 $\,$

©1982-2016 XP Solutions

Cannon Consulting Engineers		Page 1
Cambridge House	B411	
Lanwades Business Park	Area C Bioretention 100 yr	L
Kentford CB8 7PN	40 % CC	Micro
Date 09/01/2017 13:37	Designed by JOH	Desinado
File B411 catchment C bio ret	Checked by	Diamaye
Micro Drainage	Source Control 2016.1	

Summary of Results for 100 year Return Period (+40%)

Half Drain Time exceeds 7 days.

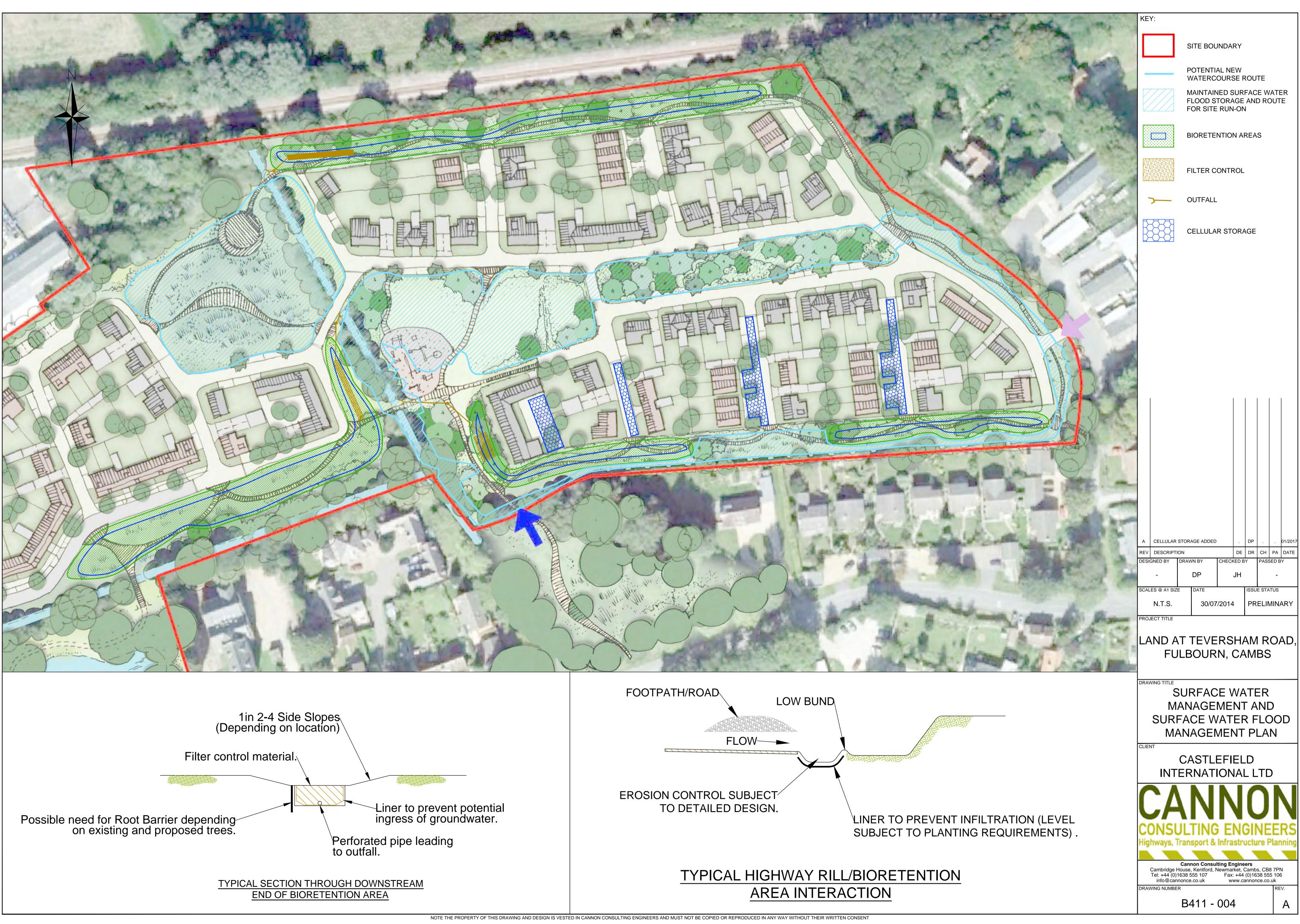
Outflow is too low. Design is unsatisfactory.

	Storn Event		Max Level (m)	Max Depth (m)	Max Infiltration (l/s)	Max Control (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
15	min S	Summer	99.604	0.204	0.0	0.1	0.1	317.4	O K
30	min S	Summer	99.627	0.227	0.0	0.1	0.1	357.7	O K
60	min S	Summer	99.653	0.253	0.0	0.1	0.1	403.2	O K
120	min S	Summer	99.682	0.282	0.0	0.1	0.1	454.4	O K
180	min S	Summer	99.700	0.300	0.0	0.1	0.1	487.2	O K
240	min S	Summer	99.720	0.320	0.0	0.1	0.1	511.8	Flood Risk
360	min S	Summer	99.750	0.350	0.0	0.1	0.1	548.6	Flood Risk
480	min S	Summer	99.772	0.372	0.0	0.1	0.1	576.1	Flood Risk
600	min S	Summer	99.789	0.389	0.0	0.1	0.1	598.3	Flood Risk
720	min S	Summer	99.803	0.403	0.0	0.1	0.1	617.0	Flood Risk
960	min S	Summer	99.826	0.426	0.0	0.1	0.1	648.5	Flood Risk
1440	min S	Summer	99.859	0.459	0.0	0.1	0.1	695.1	Flood Risk
2160	min S	Summer	99.892	0.492	0.0	0.1	0.1	744.1	Flood Risk
2880	min S	Summer	99.916	0.516	0.0	0.1	0.1	780.1	Flood Risk
4320	min S	Summer	99.943	0.543	0.0	0.1	0.1	822.0	Flood Risk
5760	min S	Summer	99.961	0.561	0.0	0.1	0.1	851.4	Flood Risk
7200	min S	Summer	99.975	0.575	0.0	0.1	0.1	873.5	Flood Risk

	Stor Ever		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)
15	min	Summer	222.781	0.0	6.2	31
30	min	Summer	125.581	0.0	6.5	46
60	min	Summer	70.790	0.0	13.4	76
120	min	Summer	39.904	0.0	13.9	136
180	min	Summer	28.536	0.0	14.1	196
240	min	Summer	22.494	0.0	14.4	256
360	min	Summer	16.086	0.0	14.8	376
480	min	Summer	12.680	0.0	15.1	496
600	min	Summer	10.543	0.0	15.2	616
720	min	Summer	9.067	0.0	15.3	736
960	min	Summer	7.158	0.0	15.4	976
1440	min	Summer	5.129	0.0	15.2	1456
2160	min	Summer	3.675	0.0	32.4	2176
2880	min	Summer	2.901	0.0	32.0	2896
4320	min	Summer	2.054	0.0	30.3	4336
5760	min	Summer	1.607	0.0	66.5	5776
7200	min	Summer	1.329	0.0	64.7	7216
		©19	82-2016	XP Sol	utions	

Cannon Consulting Engineers								Page		
Cambridge H	louse				B411	B411				
Lanwades Bi	usines	s Pa	rk		Area C B	Area C Bioretention 100 yr				
Kentford (СВ8 7РІ	N			40 % CC				Mire	
Date 09/01,	/2017	13:3	7		Designed	by JOH				
File B411 d	catchm	ent	C bio	ret	-	-			Drai	
Micro Drain					Source Co	-	16 1			
ALCIO DIAII	lage				Source co	JIICIOI 20				
	Sum	mart	of Pe	eulte	for 100 ye	ar Potur	n Perio		٤)	
	<u>.5 um</u>	<u>ullar y</u>	OI NE	SUILS	<u>101 100 ye</u>	al recul	II FELLO	1 (+40	<u>``</u>	
Storm Max Max				Max	Max	Max	Max	Status		
	Event		Level	Depth 3	Infiltration	Control Σ	Outflow	Volume		
			(m)	(m)	(l/s)	(1/s)	(1/s)	(m³)		
8640	min Su	mmer	99,985	0.585	0.0	0.1	0.1	890.9	Flood Risk	
	min Su				0.0	0.1			Flood Risk	
15	min Wi	nter	99.604	0.204	0.0	0.1	0.1	317.4	ОК	
30	min Wi	nter	99.627	0.227	0.0	0.1	0.1	357.7	ОК	
60	min Wi	nter	99.653	0.253	0.0	0.1	0.1	403.2	ΟK	
120	min Wi	nter	99.682	0.282	0.0	0.1	0.1	454.4	ΟK	
180	min Wi	nter	99.700	0.300	0.0	0.1	0.1	487.2	ОК	
240	min Wi	nter	99.720	0.320	0.0	0.1	0.1	511.8	Flood Risk	
360	min Wi	nter	99.750	0.350	0.0	0.1	0.1	548.6	Flood Risk	
480	min Wi	nter	99.772	0.372	0.0	0.1	0.1	576.1	Flood Risk	
600	min Wi	nter	99.789	0.389	0.0	0.1	0.1	598.3	Flood Risk	
000	min Mi	nter	99.803	0.403	0.0	0.1	0.1	617.0	Flood Risk	
	IUTII MAT					0.1	0.1	648 5	Flood Risk	
720	min Wi	nter	99.826	0.426	0.0	0.1	0.1	040.0		
720 960					0.0	0.1	0.1		Flood Risk	
720 960 1440	min Wi	nter	99.859	0.459				695.1	Flood Risk Flood Risk	
720 960 1440 2160	min Wi min Wi	nter nter	99.859 99.892	0.459 0.492	0.0	0.1	0.1	695.1 744.1		
720 960 1440 2160 2880	min Wi min Wi min Wi	nter nter	99.859 99.892 99.916	0.459 0.492 0.516	0.0	0.1	0.1 0.1 0.1	695.1 744.1 780.2	Flood Risk	
720 960 1440 2160 2880 4320	min Wi min Wi min Wi min Wi	nter nter nter	99.859 99.892 99.916 99.943	0.459 0.492 0.516 0.543	0.0 0.0 0.0	0.1 0.1 0.1	0.1 0.1 0.1 0.1	695.1 744.1 780.2 822.1	Flood Risk Flood Risk	

	Stor Even		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)
8640	min	Summer	1.138	0.0	62.7	8656
10080	min	Summer	0.998	0.0	60.4	10096
15	min	Winter	222.781	0.0	6.2	31
30	min	Winter	125.581	0.0	6.5	46
60	min	Winter	70.790	0.0	13.4	76
120	min	Winter	39.904	0.0	13.9	136
180	min	Winter	28.536	0.0	14.1	196
240	min	Winter	22.494	0.0	14.4	254
360	min	Winter	16.086	0.0	14.8	374
480	min	Winter	12.680	0.0	15.1	494
600	min	Winter	10.543	0.0	15.2	614
720	min	Winter	9.067	0.0	15.3	732
960	min	Winter	7.158	0.0	15.4	972
1440	min	Winter	5.129	0.0	15.2	1450
2160	min	Winter	3.675	0.0	32.4	2168
2880	min	Winter	2.901	0.0	32.0	2884
4320	min	Winter	2.054	0.0	30.2	4296
5760	min	Winter	1.607	0.0	66.4	5720
7200	min	Winter	1.329	0.0	64.7	7144
		©198	32-2016	XP Sol	utions	


Cannon Consulting Engineer	S						Page 3
Cambridge House		B411					
Lanwades Business Park		Area C	Biore	tentio	n 100	vr	4
Kentford CB8 7PN		40 % CC		0011010	1 200	1 -	1 mm
Date 09/01/2017 13:37		Designe		тоц			— Micro
				JOH			Drainage
File B411 catchment C bio	ret	Checked					Brainage
Micro Drainage		Source	Contr	ol 201	6.1		
<u>Summary of Re</u>	esults fo	or 100 y	year I	Return	Perioc	d (+40	<u>%)</u>
Storm Max	Max	Max	Ma	ax	Max	Max	Status
	Depth In						
(m)	(m)	(1/s)	(1,	/s) (1/s)	(m³)	
0640 min Wintow 00 005	0 505	0	0	0 1	0 1	0.01 0	
8640 min Winter 99.985 10080 min Winter 99.994			. 0 . <mark>0</mark>	0.1			Flood Risk Flood Risk
	0.001	0.		0.1	0.1	200.0	
Storm	. P	ain Flo	oded I	Discharg	o Timo-	Peak	
Event		m/hr) Vo		Volume			
	•		m ³)	(m³)	•		
8640 min 10080 min			0.0	62. 60.		8568 9992	
	wincer (0.990	0.0	00.	5	9992	
	©1982-	-2016 XF	° Solu	tions			

Cannon Consulting Engineers		Page 4
Cambridge House	B411	
Lanwades Business Park	Area C Bioretention 100 yr	4
Kentford CB8 7PN	40 % CC	Magan
Date 09/01/2017 13:37	Designed by JOH	MILIU
File B411 catchment C bio ret	Checked by	Drainage
Micro Drainage	Source Control 2016.1	
<u>Ra</u>	infall Details	
C (1km D1 (1km D2 (1km D3 (1km E (1km F (1km Summer Storm Winter Storm Cv (Summer Cv (Summer Cv (Winter Shortest Storm (minn Longest Storm (minn Climate Change	s) 100 on GB 550950 257200 TL 50950 57200 m) -0.025 m) 0.288 m) 0.293 m) 0.263 m) 0.312 m) 2.488 ms Yes ms Yes r) 0.950 r) 0.950 s) 15 s) 10080	
	-	
Tot.	al Area (ha) 0.600	
Time (mins) Area Time (mins) From: To: (ha) From: To:		Area (ha)
0 4 0.150 4 8	8 0.150 8 12 0.150 12 16	0.150
©1982-	-2016 XP Solutions	
©1962-	ZOTO VI DOTUCTOHO	

No. 1. 1. 1. 1. TT		Page 5		
Cambridge House	B411			
Lanwades Business Park	Area C Bioretention 100 yr	Ly		
Kentford CB8 7PN	40 % CC	Micro		
Date 09/01/2017 13:37	Designed by JOH	Drainage		
File B411 catchment C bio ret	· encered by			
Aicro Drainage	Source Control 2016.1			
	Model Details			
Storage is	Online Cover Level (m) 100.000			
<u> </u>	Complex Structure			
<u> </u>	<u> Bio-Retention Area</u>			
	Infiltration Coefficient Base (m/hr) 0 Infiltration Coefficient Side (m/hr) 0			
Depth (m) Area (m²) Peri	imeter (m) Depth (m) Area (m²) Perimete	er (m)		
0.000 763.0	97.081 0.600 1689.0 15	52.060		
	<u>Cellular Storage</u>			
Infiltration Coefficie	nvert Level (m) 99.400 Safety Factor ent Base (m/hr) 0.00000 Porosity 0 ent Side (m/hr) 0.00000			
		a (m²)		
Depth (m) Area (m²) Inf.	Area (m ²) Depth (m) Area (m ²) Inf. Are			
Depth (m) Area (m²) Inf. 0.000 695.0 0.300 695.0	Area (m ²) Depth (m) Area (m ²) Inf. Area 695.0 726.6	726.7		
0.000 695.0 0.300 695.0	695.0 0.301 0.0			
0.000 695.0 0.300 695.0 <u>Filtr</u> Permeability Coefficie Safet	695.0 0.301 0.0 726.6	726.7		
0.000 695.0 0.300 695.0 <u>Filtr</u> Permeability Coefficie Safet	695.0 726.6 cation Outflow Control ent (m/s) 0.000010 Area (m ²) 50. Ty Factor 10.000 Invert Level (m) 99.	726.7		
0.000 695.0 0.300 695.0 <u>Filtr</u> Permeability Coefficie Safet	695.0 726.6 cation Outflow Control ent (m/s) 0.000010 Area (m ²) 50. Ty Factor 10.000 Invert Level (m) 99.	726.7		
0.000 695.0 0.300 695.0 <u>Filtr</u> Permeability Coefficie Safet	695.0 726.6 cation Outflow Control ent (m/s) 0.000010 Area (m ²) 50. Ty Factor 10.000 Invert Level (m) 99.	726.7		
0.000 695.0 0.300 695.0 <u>Filtr</u> Permeability Coefficie Safet	695.0 726.6 cation Outflow Control ent (m/s) 0.000010 Area (m ²) 50. Ty Factor 10.000 Invert Level (m) 99.	726.7		
0.000 695.0 0.300 695.0 <u>Filtr</u> Permeability Coefficie Safet	695.0 726.6 cation Outflow Control ent (m/s) 0.000010 Area (m ²) 50. Ty Factor 10.000 Invert Level (m) 99.	726.7		
0.000 695.0 0.300 695.0 <u>Filtr</u> Permeability Coefficie Safet	695.0 726.6 cation Outflow Control ent (m/s) 0.000010 Area (m ²) 50. Ty Factor 10.000 Invert Level (m) 99.	726.7		
0.000 695.0 0.300 695.0 <u>Filtr</u> Permeability Coefficie Safet	695.0 726.6 cation Outflow Control ent (m/s) 0.000010 Area (m ²) 50. Ty Factor 10.000 Invert Level (m) 99.	726.7		
0.000 695.0 0.300 695.0 <u>Filtr</u> Permeability Coefficie Safet	695.0 726.6 cation Outflow Control ent (m/s) 0.000010 Area (m ²) 50. Ty Factor 10.000 Invert Level (m) 99.	726.7		
0.000 695.0 0.300 695.0 <u>Filtr</u> Permeability Coefficie Safet	695.0 726.6 cation Outflow Control ent (m/s) 0.000010 Area (m ²) 50. Ty Factor 10.000 Invert Level (m) 99.	726.7		
0.000 695.0 0.300 695.0 <u>Filtr</u> Permeability Coefficie Safet	695.0 726.6 cation Outflow Control ent (m/s) 0.000010 Area (m ²) 50. Ty Factor 10.000 Invert Level (m) 99.	726.7		

Updated surface water management strategy B411-004-Rev A

2016 Geosphere groundwater monitoring report

Geosphere Environmental Ltd Brightwell Barns Ipswich Road Brightwell Suffolk IP10 0BJ

Our Ref 1630,MO/Ltr01/JG,JD,PD/21-06-16/V1 Your Ref

Date 21 June 2016

T: 01603 298 076 F: 01603 298 075 E: info@geosphere-environmental.co.uk w: www.geosphere-environmental.co.uk

Castlefield International Ltd c/o Cannon Consulting Engineers Cambridge House Lanwades Business Park Kennett Newmarket Suffolk CB8 7PN

For the attention of James Howard

By Email - james.howard@cannonce.co.uk

Dear Mr Howard

GROUNDWATER MONITORING AT TEVERSHAM ROAD, FULBOURNE, CAMBRIDGESHIRE, CB21 5HE

1. Introduction

This factual letter report has been prepared for the Client, Castlefield International Ltd c/o Cannon Consulting Engineers.

Geosphere Environmental was commissioned to undertake additional groundwater monitoring visits at the subject site, outlined by and located by Drawing reference 1630,MO/001, attached.

This was to be achieved by:

• Undertaking monthly monitoring of the groundwater levels over a period of six months to assess the changes in groundwater.

This is a continuation of monitoring groundwater levels with the previous data included below.

2. Groundwater Level Monitoring

The groundwater level monitoring involved multiple visits to the site over six months, and using a dipmeter to determine the depth to groundwater below the surrounding ground level. The monitoring points were WS1a and WS3a, as illustrated by the attached Exploratory Hole Location Plan, Drawing ref. 1630,MO 001/Rev 0.

Another monitoring point, WS6a, was available during previous phases of groundwater monitoring, but could not be located during any of the recent monitoring visits, despite numerous additional visits by Geosphere Environmental personnel to search for the monitoring pipe.

DIRECTORS Tom Powling, Anne Davies REGISTERED OFFICE Brightwell Barns, Ipwich Road, Brightwell, Suffolk, IP10 0BJ REGISTERED NO. 7107630 VAT NO. 985 4247 79

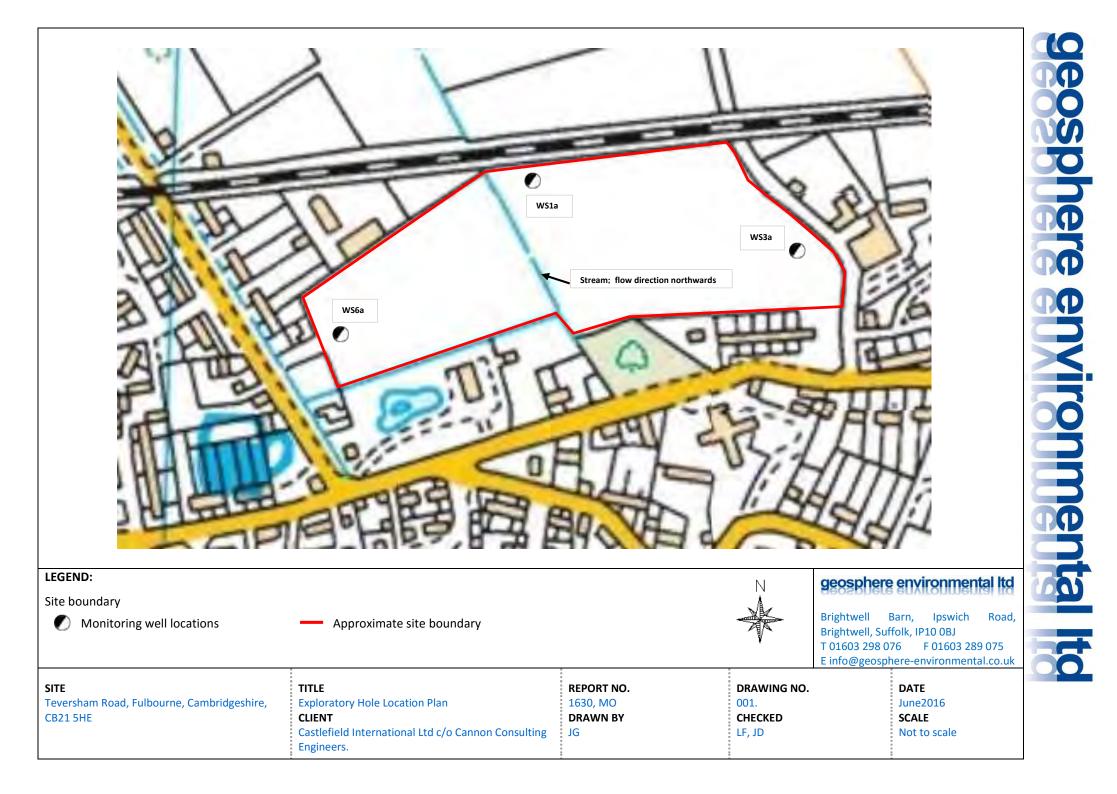
geosphere environmental Itd

2.1 Groundwater Monitoring Data Summary

Groundwater was measured within the locatable monitoring wells on six occasions, within this phase of works and this is summarised below. In addition to which, the data from the previous phases, (report or project reference 1058,CO), are displayed below to assist assessment:

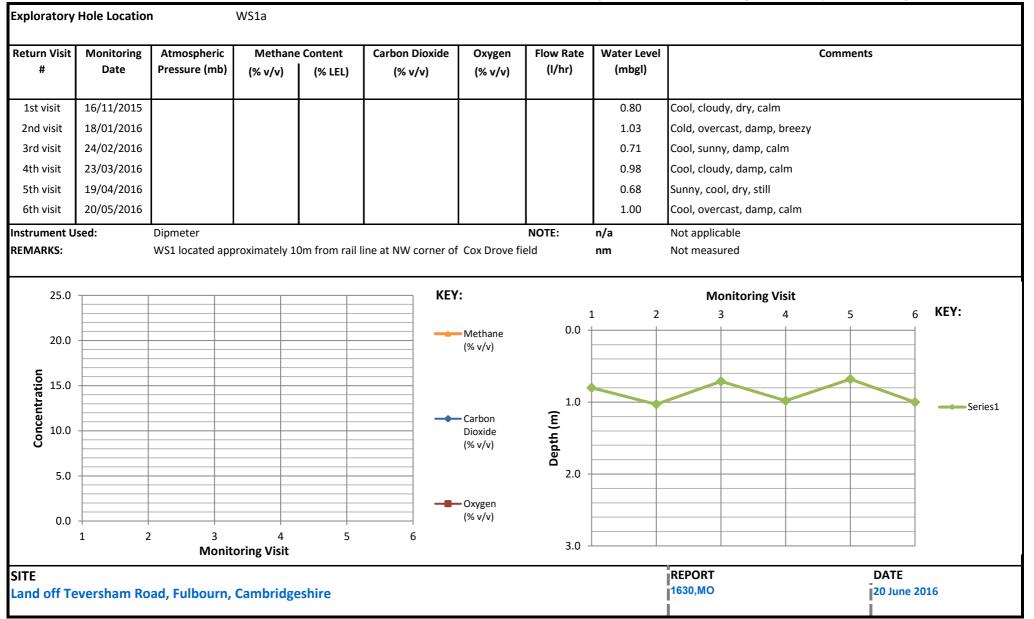
Summary of groundwater depth results						
Date of visit	WS1a (mbgl)	WS3a (mbgl)	WS6a (mbgl)			
05/02/2015	0.65	0.92	0.63			
16/02/2015	0.75	1.00	0.66			
13/03/2015	0.74	1.03	0.67			
28/04/2015	0.79	n/m	0.60			
28/05/2015	0.81	1.14	0.59			
05/06/2015	0.88	1.08	0.66			
16/11/2016	0.80	1.10	n/m			
18/01/2016	1.03	0.68	n/m			
24/02/2016	0.71	1.00	n/m			
23/03/2016	0.98	0.78	n/m			
19/04/2016	0.68	0.99	n/m			
20/05/2016	1.00	1.25	n/m			

The stream running through the site was observed however the best access point was obstructed by a fallen tree. Where the stream was observable it was flowing northwards, with clear water and at a moderate rate.

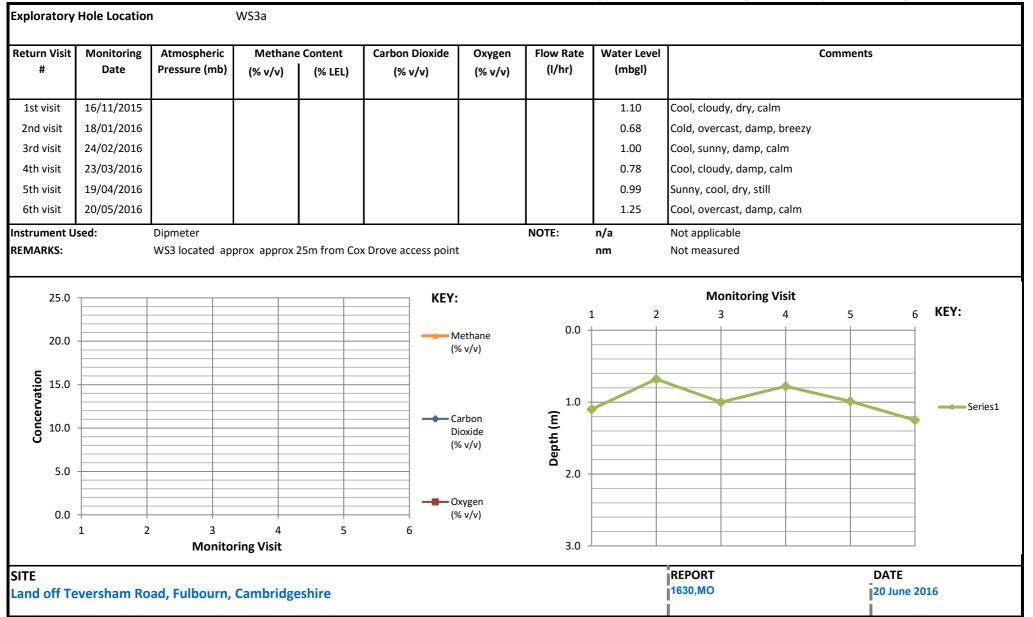

The results are provided as an attachment. Our standard report conditions and limitations apply to this letter report and these are available upon request.

We trust the above is clear and acceptable, however if you have any comments or queries please do not hesitate to contact us.

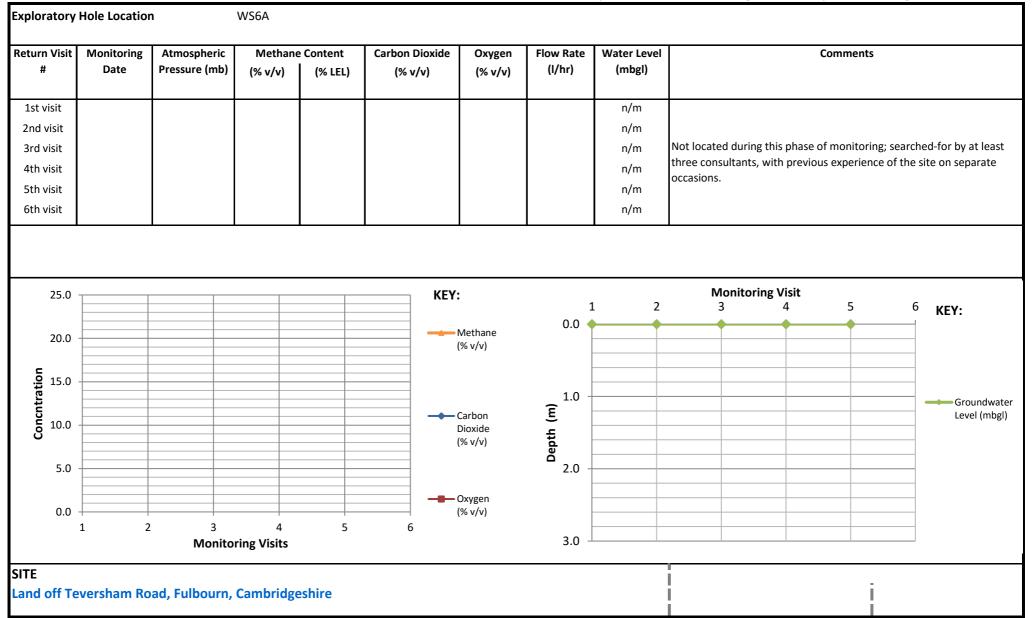
Yours sincerely


Jim Dawson *Principal Geoenvironmental Consultant* Geosphere Environmental Ltd

Enclosures/Attachments: Exploratory Hole Location Plan - Drawing 1630,MO/001 (June 2016) Groundwater monitoring data, project 1630,MO Groundwater monitoring data, project 1058,CO

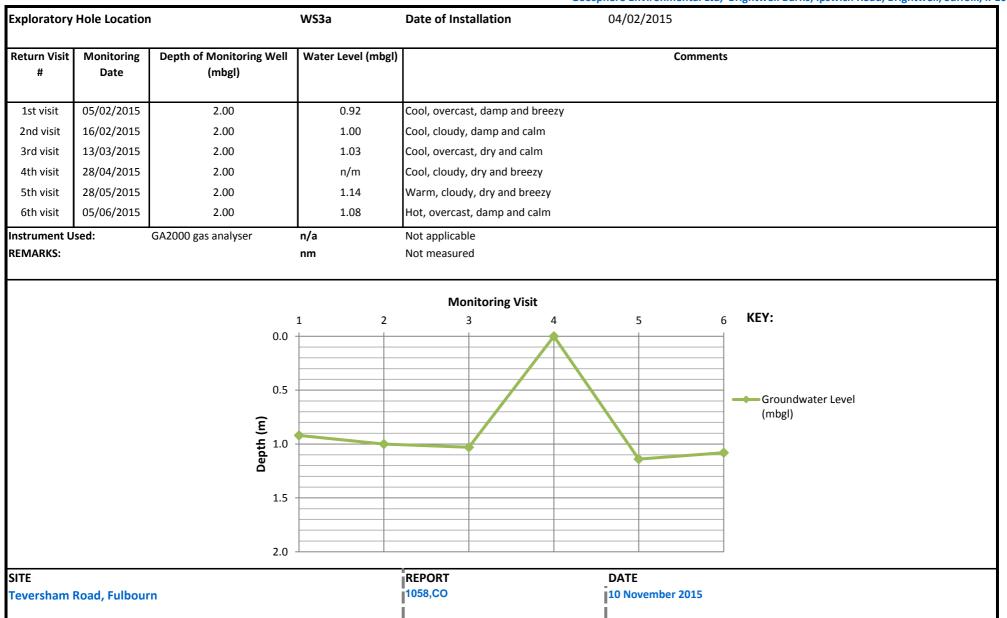

GROUND GAS AND GROUNDWATER MONITORING DATA

geosphere environmental Itd


GROUND GAS AND GROUNDWATER MONITORING DATA

geosphere environmental Itd

GROUND GAS AND GROUNDWATER MONITORING DATA


geosphere environmental ltd

geosphere environmental ltd

Exploratory	Hole Location	1	WS1a	Date of Installation	04/02/2015		
Return Visit #	Monitoring Date	Depth of Monitoring Well (mbgl)	Water Level (mbgl)		Comment	s	
1st visit	05/02/2015	2.70	0.65	Cool, overcast, damp and breezy			
2nd visit	16/02/2015	2.70	0.75	Cool, cloudy, damp and calm			
3rd visit	13/03/2015	2.70	0.74	Cool, overcast, dry and calm			
4th visit	28/04/2015	2.70	0.79	Cool, cloudy, dry and breezy			
5th visit	28/05/2015	2.70	0.81	Warm, cloudy, dry and breezy			
6th visit	05/06/2015	2.70	0.88				
nstrument U	sed:	GA2000 gas analyser	n/a	Not applicable			
REMARKS:			nm	Not measured			
				Monitoring Visit			
			1 2	3 4	5	₆ KEY:	
		0.0					
						-	
		0.5					
		1.0				Groundwater Level	
		() 1.0 1.5				(mbgl)	
		bth 1 t					
		Del					
		2.0				-	
		2.0				-	
		2.5	+				
		2.5					
SITE		2.5		REPORT	DATE		

geosphere environmental ltd

geosphere environmental ltd

Exploratory	Hole Location	I	WS6a	Date of Installation	04/02/2015	
Return Visit #	Monitoring Date	Depth of Monitoring Well (mbgl)	Water Level (mbgl)		Comments	
1st visit	05/02/2015	2.60	0.63	Cool, overcast, damp and breezy		
2nd visit	16/02/2015	2.60	0.66	Cool, cloudy, damp and calm		
3rd visit	13/03/2015	2.60	0.67	Cool, overcast, dry and calm		
4th visit	28/04/2015	2.60	0.60			
5th visit	28/05/2015	2.60	0.59	Warm, cloudy, dry and breezy		
6th visit	05/06/2015	2.60	0.66	Hot, overcast, damp and calm		
nstrument U REMARKS:	sed:	GA2000 gas analyser	n/a nm	Not applicable Not measured		
				Monitoring Visit	-	
		0.0	1 2	3 4	5 6 KEY:	
		0.5				
		E ^{1.0}			Groundwater Level (mbgl)	
		ل 1.0 - بلو 1.5 - مەلەر 1.5 -				
		2.0 -				
		2.5 -				
ÎTE				REPORT	DATE	
eversham I	Road, Fulbour	n		1058,CO	10 November 2015	

geosphere environmental Itd investigate design resolve

This page is blank